Advanced Bash-Scripting Guide

An in-depth exploration of
the art of shell scripting

Mendel Cooper

Advanced Bash-Scripting Guide: An in-depth exploration of the art of

shell scripting
Mendel Cooper

10
Publication date 10 Mar 2014
Abstract

Thistutorial assumes no previous knowledge of scripting or programming, yet progresses rapidly toward an interme-
diate/advanced level of instruction . . . all the while sneaking in little nuggets of UNIX® wisdom and lore. It serves
as atextbook, a manual for self-study, and as a reference and source of knowledge on shell scripting techniques. The
exercises and heavily-commented examplesinvite active reader participation, under thepremisethatt he only way
toreally learn scripting is to wite scripts.

Thisbook is suitable for classroom use as a genera introduction to programming concepts.

This document is herewith granted to the Public Domain. No copyri ght!

Dedication

For Anita, the source of all the magic

Table of Contents

Part 1. INEFOTUCTIONvetieiii ettt ettt e e et e et e e e e e e 1
1. Shell Programming!looeoi e ettt e een 3
2. Starting Off With @ SNarBangvveeiiiiiiii e 6

INVOKING ThE SCITPL ettt 10
Preliminary EXEICISES it 10

PAIT 2. BASICS .. eeetiieteiti ettt ettt e e s 11
3. SPECIAl CharBCLESeieeeeet et 13
4. Introduction to Variables and Parameterscoouuuiioiiiiiiiciiii e 24

Variable SUBSHITULIONiiiiii e e 24
Variable ASSIONMENTiii e 24
Bash Variables Are UNLYPEdoiiiiiiiiiii et 24
SpecCial Variable TYPES ...t 25
B QUOLING ..ttt ettt 32
QUOLING VAITAIDIES ... e 32
=S o= 0] oo TP PPT T PPPPPTP 35
6. EXIt @N0 EXIT SEAIUSvueiiiitiee ettt ettt ettt et e e e e e e naans 39
A L= TP UPPPTT 42
TESE CONSIIUCES ...ttt ettt et et e e e e e eeeas 42
Fil@ TESE OPEIBIOIS eeeeeti ettt ettt ettt e e et e e e e e e e enaens 51
Other CompPariSON OPEIEIOISceeurueieiiiieeeeti ettt et et et e e e e e eani e eenenns 55
Nested i f/then Condition TESEScc.uuiiiiiii e 61
Testing Your Knowledge Of TESEScuuuiiiiiiieiiii e 61
8. Operations and REGed TOPICSvuuiieriiieiiii ettt ettt e s 62
1007C = 0] £ TP PTUPT 62
NUMENTCEl CONSLANES ...t e e 63
The Double-Parentheses CONSIITUCTuuuiiiiiiiieeiiiie e 65
OPErator PrECEOBNCEevvi ittt ettt et e eeneans 66

Part 3. Beyond the BaSICSuuuiiiiiiiei ittt 69

9. Another LOOK @t VariableSccoouuiiiiiii e 71
INternal Variablescoouuiiii e 71
Typing variables: declare or tyPeSatoocviiiiiii e 72

ANother Use for deClareooouue i 74
SRANDOM: generate random INEEOENcocveertuuunieeeeeeeeeiiti e e e eeeeaibii e e e aeaeeaees 75
10. Manipulating Variablesiiiiiieiii e e 89
MaNIPUIBEING SEFNGS .. ceeevie ettt ettt e e e e e eenens 89
Manipulating StringS USING @WKcccuuueiiiiiie et 98
FUIther REFEIENCEi it 99
Parameter SUDSHITULIONc.uuiiiiii e e 99

11. LoOPS N BranChiESuiiiiiii et 111
[0 o S PPN 111
INESEEA LOOPS ...ttt ettt ettt ettt e et e et e et et e e e et e e e na s 111
LOOP CONIOL ..ttt e et e e et eeenaa s 112
Testing and BranChingoooieiiii e 112

12. Command SUDSHTULTIONiieiiiii i 113

13, ArthMELiC EXPANSIONcciitieiiiii ettt e et e et e e e et e e e e e eeee 120

1. RECESS TIMI ceuiiii ettt ettt e e et e et e e et e e et e e et e e et e et eeanaae 121

Part 4. COMMENGSeevuieiti ettt ettt et e et ettt et et e et e e e e et e e e eba s 122
15. Internal Commands and BUITTINScoouuiiiiiiie e 136

JOD Control COMMEBNGScevvueieiii e e e e 138

16. External Filters, Programs and COmMMandSoeeeuiiiinieiiieii e eee e e 140

BaSiC COMMEBINGScevvuiiiiiiie ettt ettt e et e e e e e e 140

Advanced Bash-Scripting Guide

ComPIEX COMIMANGSuuieiieiii e e e e e e e e e e e e et e e et e e e e eateeaanaaannaes 142
Time / Date COMMANGSceevtiieieiii et e eeaa e e eanens 142

Text Processing COMMEBNGSccouuiiiinieiiieee e e e e e e e e e e e e e e e e e e eeaens 142

File and Archiving ComMandSc.veiiiiiiiiiieii e e e e 143
Communications COMMENGSccuuuuieiiiiiiee et et e e e e e et e e et e e et eeeaennns 144
Termina Control COMMANASevveviieieiii e e e e eeae e eeees 145
MaEh COMMANGSceeeei e e e e e s 145
MisCellanNeoUS COMMANGSccvvviieeiiiie e e 145

17. System and Administrative ComMmMaNScceuuiiiiiieiiiieeii e e e e eane e 147
ANAlYZiNG @ SYSEEM SCHIPL ...ovviiii e e e e e e e e e aes 149

[ST AN 1V 1= o I I o] xS 151
18. REQUIAI EXPIrESSIONS ...uuiiiiieiiiieeiieeite et e e et e e st e et e e et e e et e e et e e sta e eateeateeetneeranaees 154
A Brief Introduction to Regular EXPreSSIONSccuuieiiieiiineieiiieeiieeei e eaieeeneesnnes 154
L1 o] o] 011 o P 156

19. HEIe DOCUMEIESeueeieiie ettt ettt et et et e e et e et e et e e e e e e e e e a e en e en e e nennnes 158
[(5 =TS 11 0T 170

0 V(@ I 2 = s] = o 1o PSPPI 174
L0 LS T 0T = o 177
Redirecting Code BIOCKSoiuuiiiiiicii e 181

YN o o1 1 o] = PPN 186

20, SUBSNEIIS .. e e aae 189
22, RESICIEA SNEIIS ...t et e e e a e 195
23. ProCess SUBSHITULIONoeiiiiiieeiis e et e e e e 197
P2 N o 1o~ SRS 203
Complex Functions and Function Complexitiescoovevuieeiiiieiiin e, 208
LOCE Vai@lES ... 213
Local variables and reCUrSION.ccuuieiiiiiiieiiiiie e 216

Recursion Without Local Variablesoviiiiiiiiiiiiiis e 219

2D, A BSES ettt aaaan 223
26. LISt CONSITUCES ...ivvvtieeieti ettt e et ettt e et e e et e e et e e et e e e e et e e e e et e e eeeannes 226
A N £ - YT PPN 230
28. INGITECt REFEIENCES ... iiiiii e e et e e e e e e e eaaenns 263
A o LAV A 2 To I o o TP 268
o oS PR 268

o oY 271

30. NEtWOork Programimingc..eeeuieii e e e e e e e e e et e e et e et eeaaneeeanaes 278
31. Of Zeros @ant NUIISeieeii e e e e eaees 281
G I T oo o 1 oo PP 285
1C2C T @ 011 o] 1=t 297
7 N €0 (o= PP 300
35. SCripting With SEYIE ..ove e e 311
Unofficial Shell Scripting StyleSheetcvvviii e, 311

36, IMHISCEITBNY ..ttt e e ettt e et e e e e aaaas 315
Interactive and non-interactive shells and SCriptSccovvvvieiiiiiiin e, 315

S 1c AV =0 TP 316
Tests and Comparisons: AITEINAIVESoveiiieiiiieiie e e 323
Recursion: a script calling itSalfooiiiii i 323
00 o g g To LS v] o £ P 326
OPLMIZBEIONSiiicii et e e e e e e e e e e e e et e e et e e et e e et e ranaees 341

YN SS o 0= o [T o PPN 345
Ideas for more POWErful SCHPLSccuuiiiiiciie e 345

LAY/ o 1= N 357

SECUNLY ISSUBS ..vuiiiiiiieii e e et e e e e e e e e e e e e e et e e et e et e e et e eaannas 359
Infected ShEll SCriPLS ...cvuiii e 359

Advanced Bash-Scripting Guide

Hiding Shell SCript SOUICE ... ccvviiiii e e 360

Writing Secure Shell SCriptsovvviiii e 360

POrability ISSUESivviiiii i e e e e e e 360

N == S T) (= PP 361

Shell Scripting Under WINAOWSoviieiiiiicii e e e 362

37. Bash, VErSIONS 2, 3, @N0 4oiiiiiiiiei e 364

(28 S Y= = T o PSP 364

Bash, VEISION 3 ...t 369

Bash, VEISION 3.1 ..o 372

Bash, VEISION 3.2 ...oiiiiiiiiiiie et 373

Bash, VEISION 4 ..ot 373

Bash, VEISION 4.1 ..o 381

Bash, VEISION 4.2 ..o 382

S T 0o 070 == P TSPP 387
F 11 o= N o (= PR 387
ADOUL the AULNOT ...t e e e e aa s 387
WHhEre t0 GO FOr HEIP ..oovniii e e e 388
Tools Used t0 Produce ThiS BOOKc.uuuiiiiiiiieiiiiiiei i eeaenns 388

[= 00 T = SO SPPRTPPN 388

Software and PriMtWAIEooiiiiieeie e 388

L@ = o[PP 389

[ESel =110 1= PP 390

23] o] oo r="o] /R PP 392
Y 00T g] o101 1= o RSt 1 £ 394
B. REFEIENCE CardSovvuiiiiiiiiiee ettt e e e et e e et e et aaan s 634
C. A Sed and AWK MICIO-PIIMEN ...ouiiiiiiiiie e e e e e e eaans 639
S o 639
NP 643

D. Parsing and Managing PathNamesScouuiiiiiiiiiiii e e e e e 647
E. Exit Codes With Special MEANINGScviviiiiii e e e e eaas 651
F. A Detailed Introduction to [/O and 1/O RedIreCtioncccuiiiiiiiiniiiiiiiieecie e 653
G. ComMANd-LiNE OPLIONSccuuiiiiieiii e e e e e e e e e e e e e e e et e e et e e et e e eaneeannaees 655
Standard Command-Line OPLIONScvuuiiiiiieiii e e e e e e e e e e e e e e aanaes 655

Bash Command-Ling OPtioNSccuuiiiiiiiiii e e e e e e e e 656

L TR T oo | T =N 658
[. Important SyStEM DIrECLOMESuiiii i eiieee e e e e e e e e e e e e e e e e e e et e e eanaeees 659
J. An Introduction to Programmable COMPIELioNccoeuiiiiiiiiiiciir e 661
S oo 2 1o o [OSSP 664
[o TE o YA o 411001 o 668
M. Sample . bashrc and. bash_profil e Fles.....cccoiiiiiiiiiii e, 670
N. Converting DOS Batch Files to Shell SCriptScvvviiiiiiiiiic e, 689
(O I = o =~ PP 693
F N 4= Y41 1o S] o 693

R AT RN aTo TS o T o) 695

e (=Y E= Lo g T 1T (o Y P 706
Q. Download and MITTON SITESu.iiiiieii e e e e e e e e e e et e e e ean s 710
L o TN o T 1= 711
ST o o)/ o o | 712
LIS O T o USSP 714
g0 1= S SOPRTPPN 717

List of Tables

8.1. OPEralOr PrECEOBNCEcvtuieiiiti ettt ettt ettt e et e e et e s 66
15,1, JOD THENEITIENS oeeneeeeit ettt 139
331 BASH OPLIONS ...ttt e e e e e e e eee 298
36.1. Numbers representing colors in ESCapE SEQUENCESuueierrineeiiiieeeeiiiaeeeeri e eeeniaeeeens 332
B.1. Special Shell Variallescouuiiiii 634
B.2. TEST Operators: Binary COMPAISONoceeuuuieiiitieeetiiiia et e e et e e et e e et e eene s 634
B.3. TEST OpEralOrS: FIlES ... et 635
B.4. Parameter SUbStitution and EXPanSIONeeieiuneiiiiiieeeiiia et e et e e et eeeeni e eeees 636
B.5. SING OPEIALHIONS ... ettt ettt et e e e e e e e e eaa e eeaans 636
B.6. MiSCEIlANEOUS CONSIIUCEScceeviiieiiiii ettt ettt et et e e eni e eeeaas 638
C.1. BSIC SEU OPEIGIOIS ... eeetteeeeti ettt ettt e ettt et e e et et e ettt e et et e e e e et e e e enba e e e enaans 639
C.2. EXamPpIes Of SO OPEIELOISceiitieeiiei ettt e e et e e e e e e b s 641
E.L RESEIVEA EXIT COUBSceeiiiiieiiiiii ettt ettt ettt e ettt e e et eeeebi e eees 651
N.1. Batch file keywords / variables / operators, and their shell equivalentscccoeeveeiinnnnnn. 689
N.2. DOS commands and their UNIX eqUIVBIENESooevuiiiiiiiiieiiii e 690
P.1. REVISION HISIOMY ...eeiiiiiii ettt ettt e e e enanns 707

List of Examples

2.1. cleanup: A script to clean up 10g files in Var/logcooeuiiiiiiiiiiei e 6
2.2. cleanup: An improved ClEaN-UP SCHPLc.uuuiiiiiie ettt e e 6
2.3. cleanup: An enhanced and generalized version of aove SCripts.c.vvivieiiiieiiiiiiieeieeeis 7
3.1. Code blocks and [/O reAIFECHIONcceuueieieii et
3.2. Saving the output of acode block 10 afileccouviiiiiiii e
3.3. Running aloop in the Dackgroundccouiiiiiiii e 15
3.4. Backup of all files changed in 18St dayovieeiiiiiiiii e
4.1. Variable assignment and SUDSHTULTIONcoouuiiiiiiiiiciii e
4.2. Plain Variable ASSIGNMENToouuiiiiiiiee ettt
4.3. Variable Assignment, plain and faNCYcoovvuniiiiiiiiiii e
A4, INEEYEY OF SING? .eettieieeti ettt ettt et ettt ettt e et et e et e et et e ettt e e e et e e e e ebanaes 24
4.5, POSITIONAl PArAMELEScouuiiiiiii ettt ettt e e e e 27
4.6. wh, whois domain NAME 10OKUDueiiniiiiie e 29
A7 USING SNITE ettt ettt 30
5.1. EChOiNg WEIrd Vari@hlesc.ouuiiiiiii ittt 34
5.2. ESCAPEA CRAraCLEN'Sceiviieeieiii ettt ettt ettt e e
5.3. DEECHING KEY-PIESSES ciiiiiiee ettt ettt e et et e e e eeaans
B.1. XIt [EXIT STBIUS ...eevvieeeeii ettt 40
6.2. Negating a condition USING |uuiiiiii et e eeeens 40
7.1 WhEE IS TIULN? e ettt e ettt e e e et e e e et e eene 43
7.2. Equivalence of test, / usr/bin/test,[]J,and/ usr/bi n/ [.o 47
7.3. ArthmMELiC TESES USING (1)) «evvnreeerrnieeimti ettt e et e et e et e et e e e e 50
7.4. Testing for BroKen INKScoooiiiiiii e e e e 53
7.5. Arithmetic and String COMPAITSONScceuuuneieiii ettt e e 57
7.6. Testing whether a string iS NUIL ... oo e 58
A 110 T PP TPPTUPTPRN 59
8.1. Greatest COMIMON TIVISOFccuuuueiiiii ettt ettt e e et e et e e e et e e e e ene e eeens
8.2. UsSiNg Arthmetic OPEraioNScceieriieiiiiiie ettt e e
8.3. Compound Condition TeStS USING && AN || ...evvvvvniiiiiiieiiiiiee e
8.4. Representation of NUMENCal CONSLANESciiiitieiiiii e e 63
8.5. C-style manipulation of VariabIesoiiiiiiiiii 65
9.1. $IFS aNd WHItESPBEEcevvvii ettt ettt e e e e eeaaaeaas
9.2, TMEH INPUL ... eeetee ettt ettt et e et et e et et e e e enb e e e enanas
9.3. ONCE MOrE, tIMEA INPUL ...ttt e et e e e e e eeens
S N 11 o [= Lo PSPPI
0.5, AM T FOOE? ottt
9.6. arglist: Listing arguments with $* and $@ceeeeeieeiiiiii
9.7. Inconsistent $* and $@DENAVIONieeeeieeeee e
9.8. $* and S@WHEN Bl FS IS BIMPLY ..evvvrrrriiiiiiiiiiiiiiiiiiiiiiiiieteeeeeteeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
9.9. UNErSCore Variablecoouuuuiiiiii e
9.10. Using declare to type VarTallesccouuuiiiiii e 73
9.11. Generating random NUMIDEYS ... e et 75
9.12. Picking arandom card from @ deCKcoouuuniiiiiiiieiii e 77
9.13. Brownian Motion SIMUIBETONcouuuiiiiiiie ittt e e 78
9.14. RANCOM DEIWEEN VAIUBScouiiiiieii ettt ettt e et et e e b 81
9.15. Ralling a single die With RANDOMiiiiiiiiiiii et 84
9.16. ReSEediNg RANDOM ...ttt et et ettt e e e e e et e e bbb aaaeaaaeeees 86
9.17. Pseudorandom NUMDEXS, USING @WKieeiiiie e e e e et e et eeen e eees 87
10.1. Inserting a blank line between paragraphsin atext fileccooovviiiii i, 89
10.2. Generating an 8-character “random” StHNGccoovuuiiiiiiiiee e 1
10.3. Converting graphic file formats, with filename changeccoooii i, 94

Vi

Advanced Bash-Scripting Guide

10.4. Converting streaming audio fillES 10 000vvuevvniiiiiiiii e 95
O o U 1T 0o [1= (o] o (N 96
10.6. Alternate ways of extracting and locating SUDSITINGSevviiiiiiieiii e 98
10.7. Using parameter substitution and €rror MESSAJEScvvvreiiinieiieeiiiieeiie e e e e eiee e eeaneens 102
10.8. Parameter substitution and “USAgE” MESSAPESuuuvvvurerrneriieeiieeeieeeteeeeteeateeeteesanaeenes 103
10.9. Length of avariableiiiiniii e 104
10.10. Pattern matching in parameter SUBSLItULIONcoeviiiiiiiiii e, 105
10.11. Renaming fil€ EXIENSIONS.uuiiiii i e e e e e e e e e e e e eaens 106
10.12. Using pattern matching to parse arbitrary StringScc.uvevuiiiiiieeiii e e 107
10.13. Matching patterns at prefix or suffix of StrNGcoooviieiiiii e, 109
S T 0o L= g o o1
11.2. for loop with two parametersin each [list] elementccooevviiiiiiiiiin i,
11.3. Fileinfo: operating on afile list contained in avariablecccooiviiiiiinie
11.4. Operating on a parameterized file list ..o,
11.5. Operating on files with @ for 100Dcouviiiiiiii e,
11.6. Missingin [1ist] iNafor l0OP ..cccuuveiiiieiiiiciie e
11.7. Generating the [| i st] inafor loop with command substitutionccocoeeviieiinnnn,
11.8. A grep replacement for binary fil€Soovuiiiiii i
11.9. Listing all users 0N the SYSIEMiiiiii e
11.10. Checking all the binaries in a directory for authorshipccoooeviiiiiiiicin e,
11.11. Listing the symbolic links in @ direCtoryccooeviiiiiiiiiiii e,
11.12. Symboalic linksin adirectory, saved to afilecccooeiiiiiiiiiiii e,
0 TN = 1Y/ = (o g o o P
11.14. Using efax in batch MOdEcoouiiiiiii e e
11.15. SIMPIE WHIlE 100D ..cvuiciiice e e e e e eaas
11.16. ANOthEr WHIlE 100D .. .cevniiiici e e e s
11.17. while loop with multiple CONAItioNSccuiiiiii e
11.18. C-style syntax in @aWhil€ 100Dcvuuiiiii e e
0 TR 1] oo P
2O =S o N oo o 111
11.21. Effects of break and continUe in @l00Pcovviiiiiieiiiicii e
11.22. Breaking out of multiple 100p [&VEISccouiiiiiii e
11.23. Continuing at a higher [00p 1eVEloviiii e,
11.24. Using continue N in an actual taskccoveiiiiiiiiici e
T O £ g To [o T TP
11.26. Creating MENUS USING CASE .vuuevvunerrtnereteesteeetneeetnaessnesstnaestnaestnaesenaessnaeesteesnaesnns
11.27. Using command substitution to generate the case variablecccoevvviiiiiiiiiincienes
11.28. SIMple String MatChingoiuiiii e e e eaa s
11.29. Checking for alphabetiC INPULoiiiiiii e
11.30. Creating MEenUS USING SEIECEcviniiii e e e e e
11.31. Creating menus using Select in afunClionc.cccoviiiiiiiiii e
N IS (1o Lo IR =or T o) 1 o N 116
12.2. Generating a variable from @aloopcooviiiiiiiii e 116
T T 0o [T To = 117 o =1 1 118
15.1. A script that spawns multiple instances of itSelfcooeiiiiiii i, 137
15.2. Printf i @CtON ..o
15.3. Variable assignment, USING FAAocvuuiiiiiieiiii e e e e e e e e et e e e
15.4. What happens when read has no variableccoooiiiiiiiii e,
15.5. MUlti-lin@ INPUE T0 TEAAviiii i e e
15.6. DEtecting the arTOW KEYSciveeii it e e e e e e aen
15.7. Using read with file redir€Ctionccooiiiiii i
15.8. Problems reading from @ Pipeoviiiiiiiei e
15.9. Changing the current Working dir€Ctoryc.ooveiiiiiiiiiiiie e
15.10. Letting let do arithmetiC.covuiiiiiii e e e

Vii

Advanced Bash-Scripting Guide

15.11.
15.12.
15.13.
15.14.
15.15.
15.16.
15.17.
15.18.
15.19.
15.20.
15.21.
15.22.
15.23.
15.24.

15.25

15.26.

15.27

Using eval to select am
Echoing the command-|
Forcing a log-off
A version of rotl3

“Including” a data file

Effects of exec

Showing the effect Of evalcooviiii

ONG VANADIES ...vviie e
INE PATAIMELE'S ...uuiii e e e e e e e e e e aae e

Using set with positional ParamELEr'Scovvuiiiiiieiiie e e e e
Reversing the positional Parameterscccuuieiiiieiiiie e
Reassigning the positional ParameEterScveiiieiiiieiiii e e e e
“UNSEiNG” @ Varialeviii e
Using export to pass a variable to an embedded awk scriptccoovviiiiiiiiiin e,
Using getopts to read the options/arguments passed t0 a SCriptcoocvvveviiieiiineeiinnnnn.

A (useless) script that SOUrCeS ItSElfiviiiii e

A SCript that eXEC'S ITSEIT L.oeii

. A script that kills itself

Waiting for a process to finish before proceedingccooveviiieiiiiieie e,

16.1. Using Is to create a table of contents for burning a CDR diSKcccvvveviiiiiiniiiiineii,

16.2.

Hello or Good-bye

16.3. Badname, eliminate file namesin current directory containing bad characters and white-

S 070 SRR
16.4. Deleting afile by itsSinode NUMDEYcoiiiiiii e
16.5. Logfile: Using xargs to monitor SyStemM [0gcccuvviiiiieiiiiiiii e
16.6. Copying files in current directory t0 anothercooviiiiiiiii e
16.7. Killing ProCESSES DY NAMIEivviiii et e e e e
16.8. Word frequency analySiS USING XaITS ...ueeuueruneerieeaiieeeineeetessiseesnnessneesineesnneesnnnaes

16.9.

16.10.
16.11.
16.12.
16.13.
16.14.
16.15.
16.16.
16.17.
16.18.
16.19.
16.20.
16.21.
16.22.
16.23.
16.24.
16.25.
16.26.
16.27.
16.28.
16.29.
16.30.
16.31.
16.32.
16.33.
16.34.
16.35.
16.36.

Using eXprc.cc.eueeee.
Using date
Date caculations

Printing out the From li

Looking up definitions

du: DOS to UNIX text

Generating “ Crypto-Qu
Formatted file listing. .

An “improved” strings

basename and dirname

WOrd FreqUENCY ANAIYSIS ..u.iiue ittt e et e e e e e e e e e e e e e e et e e et e e e eanaas
WHhICh fIlES @8 SCIPIS? vt e e e s
Generating 10-digit random NUMDEYScouiiiiiicie e e e
Using tail to monitor the SyStemM 10govviiiiiiie e

nesin stored email MESSAYESccevveiiiiiiiiieeiieeee e e,

Emulating grep iN @ SCHPL ..ovvee i e e e e e e e e e e e e
CrossWOrd PUZZIE SOIVERueiii e e e e e eaes

in Webster's 1913 DiCtionarycccveevniiiiiieiiieecie e

Checking words in alist for Validitycooviiiiiiiiiiii e
toupper: Transforms afile to all UPPErCase.covvvvviiiiiii i,
lowercase: Changes all filenames in working directory to lowercase.c..ccoeeevvnnenns

FIlE CONVEISION. viieiiieieeee e

rotl3: UltraeWeak ENCIYPLION. ..vuiie i e e e e e e eaa s

OLE” PUZZIESceieiei e

Using column to format a directory liStingoeevviiiiiieiiiiccie e
Nl: A SElf-NUMBENNG SCIIPL. .ovvniii e e
manview: Viewing formatted Manpagescccuiveiiieiiiieiiieee e
UsiNg CPIio t0 MOVE @ AITECLONY T8 . uuuviiciii e e e
Unpacking an rPM arChiVcouueiiii e e e e e e e e e e e aaeees
Stripping comments from C program fileScovviiiiiiiiii e
Exploring / usr/ XLLIR6/ DI N oo

(070 111077010 [N

Using cmp to compare two files within a script.ccoooiviiiiiii e,

Advanced Bash-Scripting Guide

16.37. A script that copies itself IN SECHONScvvuiiiii e
16.38. Checking file INtEOIILYuiiii i e e e e e
16.39. Uudecoding encoded filEScvuiiii i
16.40. Finding out where to report @ SPaMIMErociiiiiiii e e e
16.41. Analyzing @ SPam OMAINc.uueiiieiii e e e e e e e e e e e et e e et e e et e e e e eanaas
16.42. GELtiNG @ SLOCK QUOLEuiiiii e e e e e et e e e e e e e eaens
16.43. UPAting FCAniiiiiii et e e e e e e e e r e aae
7 B £ o 1= o TN
16.45. A script that MailS ItSalf ...
16.46. Generating Prime NUMDBENSuuiiiii i e e e e e e
16.47. Monthly Payment 0N @ MOMQagEovvunieiiieiii e e e e e e e e e e e e e e aanaees
16.48. BESE CONVEISION ...eevtiieeiiiiieeeeti e e e ettt e e e eett s e e eett s e e eett e e e eett e eeeettaeeeettaeeaesenaaaeees
16.49. Invoking bc using a here doCUMENLccuiiiiiieiie e e e e e
16.50. CalCUIAtiNG Pl . oovniiiiii e
16.51. Converting a decimal number to hexadecimalccoiiiiiiiiiii i
Ry = (o 1 o T
16.53. Calculating the hypotenuse of atrianglecccuviiiiiiiii e
16.54. Using seq to generate |00p argUMENESc.uuiiiieiiiieieiiee et ee e ee e e eea e e et e eeanaeeaneens
T I 1 (= g O TU o | PRSPPI
16.56. Using getopt to parse command-lin€ OptioNSccoovviiiiiiiiiiiiec e,
16.57. A script that COPIES ItSEIT ...
16.58. EXEICISING A0 ...ovniiiiieiie e e e e e e e aaa
16.59. Capturing KEYSITOKESuiiiiiiiii e e e e e e e e e e eee
16.60. Preparing a bootable SD card for the Raspberry Picoooviiiiiiiiiii i
16.61. Securely deleting @ fileoiiiiii
16.62. FIlENAME QENEIAON ...vuiiiii ettt e e e e e e e e e e e e e e e et e e e et e e ran e e et
16.63. Converting Meters t0 MIIESc.uiiiii i e e e e e
7 B £ o o PP
17.1. SEtting @ NEW PASSWOITciiiiiiiiieiii e e ee e e e e e e e e e et e e et e e ean e e st e eaneeannaees
17.2. Setting an €rase CharaCterciiiiiiii e e e e e e e aaas
17.3. secret password: Turning off terminal €ChOiNgcooeviiiiiiiii e
R Q=Y o=y (= (= 1 o
17.5. Checking a remote server for identdccoeuieiiiiiiiie e
17.6. pidof helps Kill @ PrOCESS ... ccvueii e e e e
17.7. Checking @ CD IMBOE «.uu vvtiiii et e e e e e e e e e e e e e e et e e et e e e e e et e e e aaneeaanaaes
17.8. Creating afilesystem in afil@cooviiiiiii e
17.9. Adding anew hard driVecouniiiii e
17.10. Using umask to hide an output file from prying eyescccocviveiiiiiiii i,
17.11. Backlight: changes the brightness of the (laptop) screen backlightccoeeeen,
17.12. killall, from/ et e/ rc. d/ i Nit. d o 149
19.1. broadcast: Sends message to everyone 10gged iNcouuieiiiieiiii i 158
19.2. dummyfile: Creates a 2-line dummy fileoiiiiiiiiii e 159
19.3. MUlti-liN€ MESSAPE USING CAL ..vvuiiiieiiie eaeaas 160
19.4. Multi-line message, With tahs SUPPressedovviiiiiii i 161
19.5. Here document with replaceable parametersovevvieiiii i 161
19.6. Upload a file pair to Sunsite incoming dir€CtONYoevviiiiiiiieiie e e 162
19.7. Parameter substitution turned Offoiiiiiiiii 163
19.8. A script that generates another SCriptcoovniiii i 164
19.9. Here documents and fUNCLIONScooiiuiiiiiiii e 165
19.10. “AnoNYMOUS’ HEIre DOCUMENT ...ivuitieieieieiee i e e e e e e e ae e 166
19.11. Commenting out ablock Of COOEc.uuiiiiiii e 166
19.12. A Self-dOCUMENTING SCIIPE ..uuiieieeii e e e e e e e e e et e e et e e e e aaeeeens 167
19.13. Prepending a lineto @ file ...couv i 171
19.14. Parsing amaillioXccouuiiiiiiiiii e 172

Advanced Bash-Scripting Guide

20.1. Redirecting St di N USING EXEC ...u.ivuuiiiiicei e ee e e e e e e e e e e e et e e et e et e e aaeeeens 177
20.2. Redirecting St dOUL USING EXEC ...cvvuiiiiiieii e e e e e e e e e e e e e e et eeaa e eees 178
20.3. Redirecting both st di n and st dout in the same script with execc.ccceviiiiiiiinnnns 179
20.4. Avoiding @ SUBSNEILcoii i 180
20.5. Redirected While 100Doiiiiiii e e e 181
20.6. Alternate form of redirected Whil€ 100Pccovuiiiiiiii e 182
20.7. RedireCted UNtil OOivveiiiie e e e e e e e e e et e e e et e e et e e eanaeee 183
ORI R L= [T ox (= I {0 oo 183
20.9. Redirected for loop (both st di n and st dout redirected)coeveiiiiiiiiiiiiiiniiecs 184
20.10. Redirected If/then tESEceue i 185
20.11. Data file names.data for above eXampleScoviiiiiii e 185
b0 I R 0T o] oo = Y= o P 186
21.1. Variable scope in @ SUBShEllcooiniii i 190
20,2, LISt USEN ProfilES ..uiiiiiiiiiiiiii ettt 192
21.3. Running parallel processes in SUDShEllS ..o, 193
22.1. Running a SCript in restricted MOGEuuiiiiiiiiii e e e e e 195
23.1. Code block redirection Without TOrKiNgccuviiiiiiiii e 199
23.2. Redirecting the output of process substitution into aloop.cccceeveiiiiiiiiieeiiiieee e, 200
S TS] o T 0 o o) P 203
24.2. FuNction Taking ParamEterSccuiiiiiiiiiii e e e e e e e e aaaas 208
24.3. Functions and command-line args passed to the SCriptcooeviiiiiii i 209
24.4. Passing an indirect reference to afunCtioncooeiiii i 210
24.5. Dereferencing a parameter passed t0 afunClioNcccvviiiii i 210
24.6. Again, dereferencing a parameter passed to afunctionccoeeeviiiiiiieiin i 211
24.7. Maximum Of tWO NUMDBETSuiiiiiiii e

24.8. Converting nUmMbers to ROMaN NUMEIAlScuueiiiiiiii e e

24.9. Testing large return values in @ funCtioncoooiiiiiiiiiiiii e,

24.10. Comparing tWo [arge iNTEgENSvuiiii e e e e e e e

24.11. Real NamMe frOM USEIMAIMIEiiiiii i eeeiii ettt e et e e e et e e et s e e et e e e eaa e eeneanns 212
24.12. Local variable VISIDHITYccouiiiiii e 214
24.13. Demonstration of a simple recursive fuNCtioNc.cooiiiiiiiiiie e 217
24.14. Another SIMple deMONSIIAEiONcivuiiiie e e e e e e e e eaa s 217
24.15. Recursion, using alocal variablec.couiiiiiiii 218
24.16. The FIDONACCH SEQUENCE ... cvvuieiii e e e e e et e e e e e e e e e e e e e e e et e e et e e e e ean s 219
24.17. The TOWESS Of HABNOI ..vuuiiiiiiie et e e et e e et e e e eaa e e e ennns 220
25.1. AliaseS WIthin @ SCIIPE c.uuiie i e e e e e e e e e e eeaaas 223
25.2. unalias: Setting and UNSELtiNG aN @li8Socvvniiiiiiiii e 224
26.1. Using an and list to test for command-line argumentsccooeeiiieiiiieiie e, 226
26.2. Another command-line arg test using an and listccooeeiiiiiiiiiciin e 227
26.3. Using or listsin combination with an and listcccoiiiiiiiiiini e 227
27.1. SIMPIE AITAY USAGE «.vuueevueieiieeii e et e ettt e e te e et e e e e e et e e et e e et e e st e e et eeaaeeat e eetneeeanaeeees 230
27.2. FOrMAEIING 8 POBM L..iitiiii e et e e et e e e e e e e e e et e e et e e et e e et eeaa e ean e eatnaestnaeeennaes 232
27.3. VariousS aIray OPEIAHONSuueieuueeiiieiiieeeie e e s e e st e e st e et e e st e e et e e et eeaneeatnaestnaeranaeeees 233
27.4. StIING OPEratioNS ON @ITAYS ...vuuevvuneirteeeteeeteesttteestaeestaeestreeaaeeataestaesaaestnaerannaesnnaees 234
27.5. Loading the contents of a SCript iNt0 @ @rTayc..uveviiieiiiiiciie e e 236
27.6. Some specCial PropertieS Of @rTAYS ..vuvvvn i e e 237
27.7. Of empty arrays and empty ElemMENtSccouiiiiiiiiiii e 238
27.8. INILAlIZING @ITAYS .vuuiieii e et e e e e e e e e e e e et e e et e e et e e et e e eean s 242
27.9. Copying and CONCALENALING @ITAYSuueveeeiiieeeieeei e et e e e e et e e e e e s e e et e e e eataeranaaees 244
27.10. MOre 0N CONCALENAING GITAYSuueveuneerieerieeeie ettt e eeetaeest e eet e et e esttaeeateeateestnaerenaaees 245
27.11. The BUBDIE SOOItvuiieei et e e et e e e era e eeees 248
27.12. Embedded arrays and indireCt refEreNCESccuuiiiiiiiiie e e 250
27.13. The Sieve Of EratOStNENEScvuiiiiiiiii e e et e e e e eees 252
27.14. The Sieve of Eratosthenes, OptimiZedoovuiiiiiiiiiii e 254

Advanced Bash-Scripting Guide

27.15. Emulating a puSh-0OWN SEACKuuiiiiiiii e e e e e e e e e e e e e eens 255
27.16. Complex array application: Exploring a weird mathematical Series.........ccoocevvveviieeennnnnn. 257
27.17. Simulating a two-dimensional array, then tilting itcooieiii i, 259
28.1. Indirect Variahle REFEIENCESiiiiiii i e e e 263
28.2. Passing an indirect referenCe t0 @WKco.uiiiiiieiiiiiei e e e e 265
29.1. Using / dev/ t cp for troubleShootinguiviiiiiii e e 270
e B - g To 1 00 o 270
29.3. Finding the process associated With @ PIDccooiiiiiiiiiii e 274
29.4. ON-liNE CONNECE SEALUS ...evvviieiiiii et et e e e e et e e e et e e e e et e e e eate s e e e entn s eeeenes 276
30.1. Print the SErver @NVIFONMENTuuuiiiiii et e et e et e e e e e e et e e e e e eeeenns 278
30.2. TP @UMESSES ..ottt 279
3L.1. HidiNg the COOKIE A ...cuuuiiiiiieii et e e e e e e e e e et e e e aens 282
31.2. Setting up aswapfile USING / dEV/ ZEI O ..cvvvniiii e 282
31.3. Creating @ raMOiSKuuiiiiieiii e e e e e e e e e e a e raas 283
G I N o 0o o Vo o A 285
AV 1= = T oo =YY (o (o 285
32.3. test24: another BUGQY SCHIPL ...vvvniei e e e e e e e e e e e e aa e eeas 286
32.4. Testing a condition With @n @SSErtc.uiiiiiiiiiiii e e e e e 288
Gy S I =0 o 1 0o = A= P 289
32.6. Cleaning up after CONErOl-Cuiiiiiieiiii e e e e e e e e e et e e e e e eanees 290
32.7. A Simple Implementation of a ProgresS Barc.vevvuieiiiiieiiieeii e e e 291
32.8. TraCing @ Variahle ... ccoue i 292
32.9. Running multiple processes (0N an SMP BOX)ooiiiiiiiiiiic e 293
34.1. Numerical and string comparison are Not equIValentc..oeeviiiiiii i, 302
34.2. SUDSHENl PItfallS ..vuneiiei e 306
34.3. Piping the output of echOto areadcoovviiiiiii e 306
I 1= T = o o= N 317
36.2. A dightly more complex Shell WIapPErcoovvniiiiiieie e e 317
36.3. A generic shell wrapper that writesto alogfilecoocoiiiiiiiiiii e, 318
36.4. A shell wrapper around an @WK SCIIPEcvveeiiieii e e e e e 319
36.5. A shell wrapper around another awk SCriptcooviiiiiiiiii e 320
36.6. Perl embedded in @ Bash SCHPLiiiiiiiiie e 321
36.7. Bash and Perl scripts combIiNedocoviiiiiiiii e 321
36.8. Python embedded in @ Bash SCIHPEccvuiiiiii i e e 322
36.9. A SCHPt that SPEAKS ...uiviiiiii e e 322
36.10. A (useless) script that recursively callSitSalfoovviiiii i 323
36.11. A (useful) script that recursively callSitSelfooovviiiiiii 324
36.12. Another (useful) script that recursively callsitselfoooiiiiiiiii 325
36.13. A “colorized” address databaseoovveuiiieiiiiii e 326
LI S B T Yo = oo)N 328
TSI ST (v oo haTe [ero Ko = o I (=>4 AP 332
oI T AN 0= o 0 - 1 < 333
36.17. A PrOgrESS Bl ..ouiiiiiiiiiiit e 349
36.18. REUIN VAIUE tHICKENY ..uiiiiiiiiiee et e e e e e e e e e e e e e e et e e e e e e aaeeaens 351
36.19. Even more return ValuE trICKENYiiue e e e e e e aens 352
36.20. Passing and rEtUNING @ITAYS ...uvvuueeieeieeeiieeaneeste e st s e sae e e e eat e e eae e st e s aeeeanneesenns 353
36.21. FUN WIth @NBOIAIMSiiiiiii e e e e e e e e e e et e et e et e e et e eeanaees 355
36.22. Widgets invoked from a Shell SCriptoiiviiiiicii e 358
T T =~ B) (= PP 361
A IS 1o T =0 o= = Lo o TN 364
37.2. Indirect variable references - the NEBW Wayccouiiiiiiiiiii e 364
37.3. Simple database application, using indirect variable referencingc.ccceeevviiviiieiineennn. 365
37.4. Using arrays and other miscellaneous trickery to deal four random hands from a deck of

(07 10 PSPPI 366

Xi

Advanced Bash-Scripting Guide

37.5. A Simple address databhaseoeviiiieiii i 373
37.6. A somewhat more elaborate address databaseocuvviiviiiiiiiiiii e 374
T B == 110 47 - o = (= TP 375
37.8. ReadiNg N CharaClersoiiiiiiiii e e e e e e e e eaa s 382
37.9. Using a here document to set avariablec.ooiiiiiiii i 382
37.10. Piping iNPUL t0 @ TEAM ... ccvuiiii e e e e e e e e e e e et e eaen 384
37.11. NEQatiVe araly iINAICEScvvuiiiii eaens 384
37.12. Negative parameter in String-extraction CONSIIUCEc.uviviiiiiiiieeiii e 385
A.1l mailformat; Formatting an €-mail MESSA0Ecvvuiiiiiiiiiii e e e e e 394
A.2. rn: A simple-minded file renaming ULtyccoooiiiiii i 395
A.3. blank-rename: Renames filenames containing blanksccocciieiii i 396
A.4. encryptedpw: Uploading to an ftp site, using alocally encrypted passwordcc.uveeeen.. 396
A.5. copy-cd: Copying adata CDcccuuiiiiiiiiiiie e e 397
Y R 0] 1= A= =SSP 398
A.7. days-between: Days between tWO datesocvvuiiiiiiiiii e 400
YN AV - g To = W [1 =1 VN 403
A9, SOUNUEX COMVEISION .uuiiiiiiiieeeitii e e tett s e e eeat s e e eeataeeeettn s e eeeetn s e eeestn s eeeestn s eaeestnaaeeestnaaaeees 403
YN (O a0 N o) I = PSP 406
A.11. Datafile for Game OF LiTe ...o.uuuiiiiiiii e eaees 414
A.12. behead: Removing mail and news message headersc.ccoveviiiiiii i, 414
A.13. password: Generating random 8-character Passwordsccveeiiiieiiiieeiin e 415
A.14. fifo: Making daily backups, using Nnamed PIPESccvvvieiiiiiiii e 416
A.15. Generating prime numbers using the modulo Operatorcccoceviveiiiiieiiieeii e, 417
A.16. tree: Displaying @ dir€CtONY trE8ciuuu i e e e e e e e e e e ees 418
A.17. tree2: Alternate dir€Ctory tre8 SCIIPE «.vu.evivniiii e e e e e e eaaes 419
A.18. string functions: C-style String fUNCLIONSoiiiiiiiiii e 421
A.19. Directory inforMationcouuieiiiieiiii e e e e e e e e e e e e e e e e e e e aans 427
A.20. Library of hash fUNCLIONSuiiiiiiii e e e 437
A.21. Colorizing text using hash fUNCLONSc.uiiiiiiii e 440
A.22. More 0n hash FUNCLIONScooiuiiiiiii e 442
A.23. Mounting USB keychain Storage deviCeSviviiiiiiiiiiiii e 444
A.24, Converting t0 HTIVIL ...ouuiiiiiiii e e e e e e e e e e e et e e e e eaes 47
A.25. PresarvVing WEDIOUScvuiiiii it e e e e e e e e e e e e e e a e aen 450
A.26. Protecting literal SIHNQSoovuiiiiieii e e e e et e e e e e e eeen 451
A.27. UNProtecting literal SIINGSiiii i e e e e e e e e aan s 454
A.28. Spammer [AentifiCaioNcouiiiiiiiiiii e e 456
AL29. SPAMMEE HUNL ..o e e e e e e et e e e e 497
A.30. MBKING WOEL BASIEN £0 USE ..uvuiiieiiiieei et e e e e e e e e e e e e e e et e e et e e st e e e st e e aanaaeanees 502
AN IR AN o0 o (o 1= 11 o =] o 511
A.32. Nightly backup to @fireWir€ HDccovuiiiiiiiii e e 512
A.33. An expanded Cd COMMANGcuuiiiiiiiii e e e e e e e e e e e aanas 519
JANRC7: N AN o W g (o= o RS (0 0 IR o 1 o) P 534
A.35. Locating split paragraphs in atext filecoooiiiiiiiiii e 536
YN T 0= o (o o o A PP 537
A.37. StANAAIA DEVIBLIONiieiii et e et e ettt s e et e e et e e et a e aaee 538
A.38. A pad file generator for shareware authorscocooieiiiiiii e, 540
A.39. A AN PAgE BUITOT ..ovuiiiii e e 545
A.40. Petals Around the ROSEccuuiiiiiiii e 548
A.41. Quacky: a Perquackey-type WOrd QaIMEcovuiiiiieiiieee e e e e e e e e e e e e e eees 551
N 1 o o TP 560
A.43. A command-ling StOPWELCHccuuiiii i 565
A.44. An dl-purpose shell scripting homework assignment solutioncccoeeviiiiiiiiiieciinns 568
A.45, The KNIGNE'S TOUE ..civtiiiii et e e e e e e e e e et e e et e e et e e st e eaanaaes 570
YR Y=o oo (U= - 581

Xii

Advanced Bash-Scripting Guide

AT, FIfIEEN PUZZIE ..ot e e e e e 583
A.48. The Towers of Hanoi, graphiC VEIrSIONccouiiiiiiiiiii e e e e e e 586
A.49. The Towers of Hanoi, alternate graphiC VErSIONccccuiveiiiiiiiiiiiii e 590
A.50. An aternate version of the getopt-simple.sh SCriptoevviiiiiiii e, 594
A.51. The version of the UseGetOpt.sh example used in the Tab Expansion appendiX 597
A.52. Cycling through all the possible color backgroundscccoiiiiiiiiini e 598
A.53. MOIrSe COUE PraCliCeuueiiiiii i ei et e e e et e e e e e e eaanns 599
A.54. Baseb4 encoding/deCodiNgoevuuiiiiieiiii e 602
A.55. Inserting text in afile USING SEOcivniii e 605
A.56. The Gronsfeld CIPheriiii e e e e e e e e ees 606
A.57. BiNGO NUMDET GENEIALOTu.iiiiieiiiieiii e e e e e e e e e e e e e e e e e et e et e eaneeeen 608
A58, BASICS REVIEWEDuvviiiiii e e e e e e e et e e e s e e e e e e e e e e e 611
A.59. Testing execution times of Various COMMENGSccevuieiiiiiiiiiee e e e e e 630
A.60. Associative arrays vs. conventional arrays (EXeCUtioN tIMES)c.vvvvvveviiieiiineeeiiieeieeenen. 631
C.1. Counting LETEr OCCUITENCEScvvtieeiieeeiieeet e et e e et e e et e e et e e et e e et e e st eeat e e et e eetnaeranaens 644
J.1. Completion script for USEGELOPL.SNuuiiiiiciii e e 662
M.L Sample . BAaShr C file ..o 670
M.2. . bash _Profil @ file . 687
N.1. VIEWDATA.BAT: DOS BaCh Fil€cceeiiiieiiiee e 691
N.2. viewdata.sh: Shell Script Conversion of VIEWDATA.BAT ... 692
T.1. A script that generates an ASCH table ...o.veiieiiii e 714
T.2. ANOther ASCI tahl@ SCIIPE c.vuiiii e e e e e e e e aans 715
T.3. A third ASCII table SCript, USING AWKcuuiiiiieiiiieei e e e e e s e e e e e e aanees 715

Xiii

Part Part 1. Introduction

Script: Awriting; a written document. [Obs.]

--Webster's Dictionary, 1913 ed.

The shell is a command interpreter. More than just the insulating layer between the operating system kernel and the
user, it's also a fairly powerful programming language. A shell program, called a script, is an easy-to-use tool for
building applications by “gluing together” system calls, tools, utilities, and compiled binaries. Virtually the entire
repertoire of UNIX commands, utilities, and toolsis available for invocation by a shell script. If that were not enough,
internal shell commands, such as testing and loop constructs, lend additional power and flexibility to scripts. Shell
scripts are especially well suited for administrative system tasks and other routine repetitive tasks not requiring the
bells and whistles of afull-blown tightly structured programming language.

Table of Contents

1. Shell Programming!l oo e et eene 3
2. Starting Off With @ SNarBangooeieiiiiiiii e 6
INVOKING ThE SCITPL «.eeee et e e et e e et eeeena e e e 10
Preliminary EXEICISESttt 10

Chapter 1. Shell Programming!

No programming language is perfect. There is not even a single best language; there are only languages
well suited or perhaps poorly suited for particular purposes.

--Herbert Mayer

A working knowledge of shell scripting is essential to anyone wishing to become reasonably proficient at
system administration, even if they do not anticipate ever having to actually write ascript. Consider that as
aLinux machine boots up, it executesthe shell scriptsin/ et ¢/ r c. d to restore the system configuration
and set up services. A detailed understanding of these startup scriptsisimportant for analyzing the behavior
of asystem, and possibly modifying it.

The craft of scripting isnot hard to master, since scripts can be built in bite-sized sections and thereis only
afairly small set of shell-specific operators and options Ltolearn. The syntax is simple -- even austere --
similar to that of invoking and chaining together utilities at the command line, and there are only a few
“rules’ governing their use. Most short scripts work right the first time, and debugging even the longer
onesis straightforward.

In the early days of personal computing, the BASIC language enabled
anyone reasonably computer proficient to write programs on an early
generation of microcomputers. Decades | ater, the Bash scripting
language enables anyone with a rudimentary knowledge of Linux or
UNIX to do the same on modern machines.

We now have miniaturized single-board computers with amazing
capabilities, such as the Raspberry Pi [http://www.raspberrypi.org/].
Bash scripting provides away to explore the capabilities of these
fascinating devices.

A shell script is a quick-and-dirty method of prototyping a complex application. Getting even a limited
subset of the functionality to work in a script is often a useful first stage in project development. In this
way, the structure of the application can be tested and tinkered with, and the major pitfalls found before
proceeding to the final coding in C, C++, Java, Perl, or Python.

Shell scripting hearkens back to the classic UNIX philosophy of breaking complex projects into simpler
subtasks, of chaining together components and utilities. Many consider this a better, or at least more aes-
thetically pleasing approach to problem solving than using one of the new generation of high-powered all-
in-one languages, such as Perl, which attempt to be all thingsto all people, but at the cost of forcing you
to alter your thinking processesto fit the tool.

According to Herbert Mayer, “a useful language needs arrays, pointers, and a generic mechanism for
building data structures.” By these criteria, shell scripting falls somewhat short of being “useful.” Or,
perhapsnaot. . . .

These are referred to as builtins, features internal to the shell.

http://www.raspberrypi.org/
http://www.raspberrypi.org/

Shell Programming!

When not to use shell scripts
» Resource-intensive tasks, especially where speed is afactor (sorting, hashing, recursion 2)

 Procedures involving heavy-duty math operations, especially floating point arithmetic, arbitrary
precision calculations, or complex numbers (use C++ or FORTRAN instead)

 Cross-platform portability required (use C or Java instead)

» Complex applications, where structured programming is a necessity (type-checking of variables,
function prototypes, etc.)

e Mission-critical applications upon which you are betting the future of the company

« Situations where security isimportant, where you need to guarantee the integrity of your system
and protect against intrusion, cracking, and vandalism

» Project consists of subcomponents with interlocking dependencies

» Extensivefile operations required (Bash is limited to serial file access, and that only in a partic-
ularly clumsy and inefficient line-by-line fashion.)

* Need native support for multi-dimensiona arrays

* Need data structures, such as linked lists or trees

» Need to generate / manipulate graphics or GUIs

» Need direct access to system hardware or external peripherals
» Need port or socket I/0

» Need to use libraries or interface with legacy code

 Proprietary, closed-source applications (Shell scripts put the source code right out in the open
for al the world to see.)

If any of the above applies, consider amore powerful scripting language-- perhaps Perl, Tcl, Python,
Ruby -- or possibly a compiled language such as C, C++, or Java. Even then, prototyping the
application as a shell script might still be a useful development step.

Wewill be using Bash, an acronym 3for« Bourne-Again shell” and apun on Stephen Bourne'snow classic
Bourne shell. Bash has become adefacto standard for shell scripting on most flavors of UNIX. Most of the
principles this book covers apply equally well to scripting with other shells, such as the Korn Shell, from
which Bash derives some of its features, % and the C Shell and its variants. (Notethat C Shell programming
is not recommended due to certain inherent problems, as pointed out in an October, 1993 Usenet post
[http://Iwww.fags.org/fags/unix-fag/shell/csh-whynot/] by Tom Christiansen.)

What follows is atutorial on shell scripting. It relies heavily on examples to illustrate various features of
the shell. The example scripts work -- they've been tested, insofar as possible -- and some of them are

2AIthough recursion is possible in ashell script, it tends to be slow and its implementation is often an ugly kludge.

3An acronymis an ersatz word formed by pasting together the initial letters of the words into a tongue-tripping phrase. This morally corrupt and
pernicious practice deserves appropriately severe punishment. Public flogging suggests itself.

M any of the features of ksh88, and even afew from the updated ksh93 have been merged into Bash.

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

Shell Programming!

even useful in real life. The reader can play with the actual working code of the examples in the source
archive (scri pt nanme. sh or scri pt nane. bash), 5 give them execute permission (chnod u+r x
scri pt nane), then run them to see what happens. Should the source archive [http://bash.deta.in/abs-
guide-latest.tar.bz2] not be available, then cut-and-paste from the HTML [http://www.tldp.org/L DP/abs/
abs-guide.html.tar.gz] or pdf [http://bash.deta.in/abs-guide.pdf] rendered versions. Be aware that some of
the scripts presented here introduce features before they are explained, and this may require the reader to
temporarily skip ahead for enlightenment.

Unless otherwise noted, the author [mailto:thegrendel .abs@gmail.com] of this book wrote the example
scripts that follow.

His countenance was bold and bashed not.

--Edmund Spenser

5By convention, user-written shell scriptsthat are Bourne shell compliant generally takeanamewith a. sh extension. System scripts, such asthose
foundin/ et c/ rc. d, do not necessarily conform to this nomenclature.

http://bash.deta.in/abs-guide-latest.tar.bz2
http://bash.deta.in/abs-guide-latest.tar.bz2
http://bash.deta.in/abs-guide-latest.tar.bz2
http://www.tldp.org/LDP/abs/abs-guide.html.tar.gz
http://www.tldp.org/LDP/abs/abs-guide.html.tar.gz
http://www.tldp.org/LDP/abs/abs-guide.html.tar.gz
http://bash.deta.in/abs-guide.pdf
http://bash.deta.in/abs-guide.pdf
mailto:thegrendel.abs@gmail.com
mailto:thegrendel.abs@gmail.com

Chapter 2. Starting Off With a Sha-
Bang

Shell programming isa 1950s juke box . . .
--Larry Wall

In the simplest case, a script is nothing more than alist of system commands stored in afile. At the very
least, this saves the effort of retyping that particular sequence of commands each time it isinvoked.

Example 2.1. cleanup: A script to clean up log filesin /var/log

C eanup
Run as root, of course.

cd /var/log

cat /dev/null > nessages

cat /dev/null > wtnp

echo "Log files cleaned up."

There is nothing unusual here, only a set of commands that could just as easily have been invoked one
by one from the command-line on the console or in a terminal window. The advantages of placing the

commands in a script go far beyond not having to retype them time and again. The script becomes a
program -- atool -- and it can easily be modified or customized for a particular application.

Example 2.2. cleanup: An improved clean-up script

#! / bi n/ bash
Proper header for a Bash script.

C eanup, version 2

Run as root, of course.
Insert code here to print error nessage and exit if not root.

LOG Dl R=/var/ | og
Variabl es are better than hard-coded val ues.
cd $LOG DI R

cat /dev/null > messages

cat /dev/null > wtnp

echo "Logs cl eaned up."

exit # The right and proper nmethod of "exiting" froma script.
A bare "exit" (no paraneter) returns the exit status

#+ of the precedi ng comrand.

Now that's beginning to look like areal script. But we can go even farther . . .

Starting Off With a Sha-Bang

Example 2.3. cleanup: An enhanced and generalized version of above scripts.

#1/ bi n/ bash
C eanup, version 3

\Warning
H oo
This script uses quite a nunmber of features that will be expl ained

#+ |l ater on.
By the time you' ve finished the first half of the book
#+ there should be nothing nmysterious about it.

LOG Dl R=/var/ | og

ROOT_Ul D=0 # Only users with $U D 0 have root privileges.
LI NES=50 # Default nunber of |ines saved.
E XCD=86 # Can't change directory?

E _NOTROOT=87 # Non-root exit error

Run as root, of course.

if ["$U D' -ne "$ROOT_UI D']

t hen
echo "Must be root to run this script.”
exit $E_NOTROOT

f

if [-n"$1"]
Test whether command-line argunent is present (non-enpty).
t hen

i nes=$1
el se

[ines=$LINES # Default, if not specified on comrand-Iine.
f

Stephane Chazel as suggests the foll ow ng,
#+ as a better way of checking commuand-|ine argunents,

#+ but this is still a bit advanced for this stage of the tutorial
#

E WRONGARGS=85 # Non-numerical argunent (bad argument format).
#

case "$1" in

") 1ines=50;;

[10-9]) echo "Usage: "basenanme $0° |ines-to-cleanup”;

exit $E_WVRONGARGS; ;

*) lines=%$1;

esac

#

#* Ski p ahead to "Loops" chapter to deci pher all this.

cd $LOG DIR

Starting Off With a Sha-Bang

if ["pwd != "$LOGDIR] #or if ["$PW' != "$LOG DIR']
Not in /var/log?
t hen
echo "Can't change to $LOG DR "
exit $E_XCD

fi # Doublecheck if in right directory before messing with log file.

Far nore efficient is:

#

cd /var/log || {

echo "Cannot change to necessary directory." >&

exit $E_XCD;

#}

tail -n $lines nmessages > nesg.tenp # Save | ast section of nessage log file.
nv mesg.tenp nessages # Rename it as systemlog file.

cat /dev/null > messages
#* No | onger needed, as the above nethod is safer.

cat /dev/null >wnmp # ': >wnmp' and '> wnp' have the sanme effect.
echo "Log files cleaned up.”

Note that there are other log files in /var/log not affected

#+ by this script.

exit O
A zero return value fromthe script upon exit indicates success
#+ to the shell.

Since you may not wish to wipe out the entire system log, this version of the script keeps the last section
of the message log intact. Y ou will constantly discover ways of fine-tuning previously written scripts for
increased effectiveness.

* % %

The sha-bang (#!) 1 at the head of ascript tells your system that thisfileis a set of commands to be fed
to the command interpreter indicated. The#! isactually atwo-byte 2 magic number, aspecial marker that
designates afiletype, or in this case an executable shell script (type man nagi ¢ for more details on this
fascinating topic). Immediately following the sha-bang is a path name. This is the path to the program
that interprets the commandsin the script, whether it be ashell, a programming language, or a utility. This
command interpreter then executes the commands in the script, starting at the top (the line following the
sha-bang line), and ignoring comments. 3

More commonly seen in the literature as she-bang or sh-bang. This derives from the concatenation of the tokens sharp (#) and bang (!).
2someflavorsof UNIX (those based on 4.2 BSD) allegedly take afour-byte magic number, requiring ablank after the! --#! / bi n/ sh. According
to Sven Mascheck [http://www.in-ulm.de/~mascheck/various/shebang/#detail 5] this is probably a myth.

3The #! linein ashell script will be the first thing the command interpreter (sh or bash) sees. Since this line begins with a#, it will be correctly
interpreted as a comment when the command interpreter finally executes the script. The line has already served its purpose - calling the command
interpreter.

If, in fact, the script includes an extra # line, then bash will interpret it as a comment.

8

http://www.in-ulm.de/~mascheck/various/shebang/#details
http://www.in-ulm.de/~mascheck/various/shebang/#details
http://www.in-ulm.de/~mascheck/various/shebang/#details

Starting Off With a Sha-Bang

#!'/ bin/sh

#!/ bi n/ bash
#1/ usr/ bi n/ perl
#!'/usr/bin/tcl
#!/bin/sed -f
#!/bin/ ank -f

Each of the above script header linescallsadifferent command interpreter, beit/ bi n/ sh, thedefault shell
(bash inaLinux system) or otherwise. 4Us ng#! / bi n/ sh, thedefault Bourne shell in most commercial
variants of UNIX, makes the script portable to non-Linux machines, though you sacrifice Bash-specific
features. The script will, however, conform to the POSIX 5 sh standard.

Note that the path given at the “sha-bang” must be correct, otherwise an error message -- usually “Com-
mand not found.” -- will be the only result of running the script. 6

#! can be omitted if the script consistsonly of aset of generic system commands, using no internal shell di-
rectives. The second exampl e, above, requirestheinitial #!, sincethevariableassignment line, | i nes=50,
uses a shell-specific construct. " Note again that #! / bi n/ sh invokesthe default shell interpreter, which

defaultsto/ bi n/ bash on aLinux machine.
Tip

This tutorial encourages a modular approach to constructing a script. Make note of and collect
“boilerplate’ code snippets that might be useful in future scripts. Eventually you will build quite
an extensive library of nifty routines. As an example, the following script prolog tests whether
the script has been invoked with the correct number of parameters.

#!/ bi n/ bash

echo "Part 1 of script."
a=1

#! / bi n/ bash
This does *not* | aunch a new script.

echo "Part 2 of script."
echo $a # Value of $a stays at 1.
“*This allows some cute tricks.

#!/bin/rm
Sel f-del eting script.

Not hi ng nmuch seenms to happen when you run this... except that the file di sappears.
WHATEVER=85
echo "This line will never print (betcha!)."

exit $WHATEVER # Doesn't matter. The script will not exit here.
Try an echo $? after script termnation.
You'll get a 0, not a 85.

Also, try starting a READVE filewith a#! / bi n/ nor e, and making it executable. Theresult isa self-listing documentation file. (A here document

using cat is possibly a better alternative -- see Example 19.3, “Multi-line message using cat”).

SPortable Operating System I nterface, an attempt to standardize UNIX-like OSes. The POSIX specifications are listed on the Open Group site

[http://www.opengroup.org/onlinepubs/007904975/toc.htm].

%To avoid this possibility, a script may begin with a #!/bin/env bash sha-bang line. This may be useful on UNIX machines where bash is not

located in/ bi n

"If Bash is your default shell, then the #! isn't necessary at the beginning of a script. However, if launching a script from a different shell, such

as tesh, then you will need the #.

http://www.opengroup.org/onlinepubs/007904975/toc.htm
http://www.opengroup.org/onlinepubs/007904975/toc.htm

Starting Off With a Sha-Bang

E_VRONG_ARGS=85
script_paraneters="-a -h -m-z"
-a =all, -h = help, etc.

if [$# -ne $Nunber_of _expected_args]

t hen
echo "Usage: " basenane $0° $script_paraneters”
“basenane $0° is the script's fil enane.
exit $E_WRONG ARGS

fi

Many times, you will write a script that carries out one particular task. The first script in this
chapter is an example. Later, it might occur to you to generalize the script to do other, similar
tasks. Replacing the literal (“hard-wired”) constants by variablesis a step in that direction, asis
replacing repetitive code blocks by functions.

Invoking the script

Having writtenthe script, you caninvokeitby sh scri pt narre,soralternativelybash scri pt nane.
(Not recommended is using sh <scri pt nane, since this effectively disables reading from st di n
within the script.) Much more convenient isto make the script itself directly executable with a chmod.

Either: chnod 555 scri pt nane (gives everyone read/execute permission) o
or chnod +rx scri pt nanme (gives everyone read/execute permission)
chnmod u+rx scri pt nane (givesonly the script owner read/execute permission)

Having made the script executable, you may now testit by . / scri pt nane. 1004 it begins with a*“ sha-
bang” line, invoking the script calls the correct command interpreter to run it.

Asafina step, after testing and debugging, you would likely want to moveitto/ usr /| ocal / bi n (as
root, of course), to make the script available to yourself and all other users as a systemwide executable.
The script could then be invoked by simply typing scriptname [ENTER] from the command-line.

Preliminary Exercises

1. System administrators often write scriptsto automate common tasks. Give several instanceswhere such
scripts would be useful.

2. Write a script that upon invocation shows the time and date, lists all logged-in users, and gives the
system uptime. The script then saves thisinformation to alogfile.

Scaution: invoking aBash script by sh - scri pt namne turns off Bash-specific extensions, and the script may therefore fail to execute.

°A script needs read, as well as execute permission for it to run, since the shell needs to be able to read it.

10Why not simply invoke the script with scr i pt nane? If the directory you arein ($PWD) iswhere scr i pt nane islocated, why doesn't this
work? This fails because, for security reasons, the current directory (. /) is not by default included in a user's $PATH. It is therefore necessary to
explicitly invoke the script in the current directory witha. / scri pt nane.

10

Part Part 2. Basics

Table of Contents

3. SPECIAI CRBIECTEIS ...ttt ettt 13
4. Introduction to Variables and Parameersc.uuiiiiiiiiieiii e 24
Variable SUBSEITULIONueiiiii e eeeas 24
Variable ASSIONMENT ...ttt 24
Bash Variabhles Are UNLYPEUoiiiiiiiiii et 24
SpecCial Variable TYPES ... et e e 25
B QUOLING ettt ettt ettt ettt r e 32
QUOLING VAITAIDIES ... e 32
=S o= 0] oo E PSP PPPPTT 35
6. EXIt @N0 EXIT SEAIUSieeeitieeieei ettt ettt e e et e e et e 39
A L= TP PPTTPPPPT 42
TESE CONSIIUCES ...ttt ettt et e e e e e et e e e e e e neeaaaeens 42
Fil@ TESL OPEIBLOIS ... eeeett ettt ettt ettt e e et et ear e e e et e e enaans 51
Other ComPAriSON OPEIAIOISceeeeieeeiii ettt et e ettt e e et e et e e e e e enea s 55
Nested i f/then Condition TESISuuiiiiiii e e 61
Testing Your KNOwledge Of TESESc.vuiiiiiiiiie it 61
8. Operations and REGEd TOPICSiiereiieiiiiie ettt 62
1007 = 0] £ TSP 62
NUMENTICEl CONSLANES ... ettt et e e et e e b 63
The Double-Parentheses CONSITUCTuiiiiiiiieeiii e 65
OPErator PrECEOENCEevti ittt ettt ettt a b eenaans 66

12

Chapter 3. Special Characters

What makes a character special? If it has a meaning beyond its literal meaning, a meta-meaning, then we
refer to it as a special character. Along with commands and keywords, special characters are building
blocks of Bash scripts.

Special Characters Found In Scriptsand Elsewhere

#

n&, &

partial quoting [double quote]. "STRING" preserves (from interpreta-
tion) most of the specia characterswithin STRING. See Chapter 5, Quoting.

full quoting [single quote]. 'STRING' preserves all special characters
within STRING. This is a stronger form of quoting than "STRING". See
Chapter 5, Quoting.

, comma operator. The comma operator Hinks together a series of arith-
metic operations. All are evaluated, but only the last oneis returned.

let "t2 = ((a=9, 15/ 3))"
Set "a = 9" and "t2 = 15 / 3"

The comma operator can also concatenate strings.

for file in /{,usr/}bin/*calc

n Find all executable files ending in "calc"
#+ in /bin and /usr/bin directories.
do

if [-x "$file"]
t hen
echo $file
fi
done

/bin/ipcalc

[usr/bin/kcal c

/usr/ bin/oidcal c
/[usr/ bin/oocal c

An operator is an agent that carries out an operatiol .S?meex ples are the comm ithmetic opergtors, + - * /. In Bagh, therg is some oyerlap
between the concepts of operator and keyword. B hanﬂmyou, hEeory W hSton P F o poi nti ng FRIS TR

. L ower case conversion in parameter substitution (added in version 4 of
Bash). 13

\ escape [backslash]. A quoting mechanism for single characters.

Special Characters

\ X escapesthe character X. This hasthe effect of “quoting” X, equivalent to
'X'. The\ may be used to quote " and ', so they are expressed literally.

See Chapter 5, Quoting for an in-depth explanation of escaped characters.

/ Filename path separator [forward slash]. Separates the components of
afilename (asin/ hone/ bozo/ pr oj ect s/ Makefi | e).

Thisisalso the division arithmetic operator.

command substitution. The ‘command’ construct makes available the
output of command for assignment to avariable. Thisisalso known as back-
quotes or backticks.

3

$, 3@
$?

0 command group.

(a=hel l 0; echo $a)
I mportant

A listing of commands within par ent heses starts a subshell.

Variables inside parentheses, within the subshell, are not visible to
the rest of the script. The parent process, the script, cannot read
variables created in the child process, the subshell.

a=123
(a=321;)

echo "a = $a" # a = 123
"a" within parentheses acts like a local variable.

array initialization.

Array=(el ement1l el ement 2 el enent 3)

14
{xxx,yyy,zzz,...}

{a.z}

Special Characters

{\ pathname. Mostly used in find constructs. Thisis not a shell builtin.

Definition: A pathname is a filename that includes the com-
plete path. As an example, / honme/ bozo/ Not es/ Thur s-
day/ schedul e. t xt . Thisis sometimesreferred to asthe absolute
path.

Note

The “;” ends the - exec option of a find command seguence. It
needs to be escaped to protect it from interpretation by the shell.

[]
[
[]

[]

9 ...]
()

>E>>8 >><<>

<< redirection used in a here document.
<<< redirection used in a here string.
<, >
\<, \>
|
>|
I
& Run job in background. A command followed by an & will run in the
background.
bash$ sleep 10 &
[1] 850
[1]+ Done sl eep 10

Within a script, commands and even |oops may run in the background.

Example 3.3. Running a loop in the background

#!/ bi n/ bash

backgr oung | oop. sh

for i in123456782910 # First |oop.
do

.

Special Characters

&&

for i in 11 12 13 14 15 16 17 18 19 20 # Second | oop
do

echo -n "$i "
done

echo # This 'echo' sonetimes will not display.

The expected output fromthe script:
12345678910
11 12 13 14 15 16 17 18 19 20

H* H H*

Soneti mes, though, you get:

11 12 13 14 15 16 17 18 19 20
123456789 10 bozo $

(The second 'echo’ doesn't execute. \Wy?)

HHHH

Qccasional Iy al so:
123456789 10 11 12 13 14 15 16 17 18 19 20
(The first 'echo' doesn't execute. Wy?)

H* H H*

Very rarely sonething |ike:
11 12 131234567 89 10 14 15 16 17 18 19 20
The foreground | oop preenpts the background one.

exit O

Nasinmuddi n Ansari suggests addi ng sleep 1
#+ after the echo -n "$i " inlines 6 and 14,
#+ for some real fun.

Caution

A command run in the background within a script may cause the
script to hang, waiting for a keystroke. Fortunately, thereisarem-
edy for this.

option, prefix. Option flag for acommand or filter. Prefix for an operator.
Prefix for adefault parameter in parameter substitution.

COWAND -[Optionl][Option2][...]
Is -al

sort -dfu $filename

if [$filel -ot $file2]

then # "

echo "File $filel is older than $file2."
fi

if ["$a" -eq "$b"]

16

Special Characters

then # "
echo "$a is equal to $b."
fi
if ["$c" -eq 24 -a "$d" -eq 47]
then # " "

echo "$c equals 24 and $d equals 47."
fi

par an2=${ par ant: - $DEFAULTVAL}
AN

The double-dash - - prefixes long (verbatim) options to commands.
sort --ignore-|eadi ng-bl anks

Used with a Bash builtin, it means the end of options to that particular com-
mand.

Tip
This provides a handy means of removing fileswhose names begin

with a dash.

bash$ |Is -I
-rwr--r-- 1 bozo bozo 0 Nov 25 12: 29 -badnane

bash$ rm -- -badnane

bash$ |Is -I
total O

The double-dash is also used in conjunction with set.

set -- $vari abl e (asin Example 15.18, “Reassigning the positional
parameters’)

previous working directory. A cd - command changes to the previous
working directory. This uses the $OLDPWD environmental variable.

Caution

Do not confuse the “-" used in this sense with the “-" redirection
operator just discussed. Theinterpretation of the“-" dependsonthe
context in which it appears.

Minus. Minussign in an arithmetic operation.

Equals. Assignment operator

17

Special Characters

%

Control Characters

a=28
echo $a # 28

In adifferent context, the “=" is a string comparison operator.
Plus. Addition arithmetic operator.
In adifferent context, the + is a Regular Expression operator.

Option. Option flag for acommand or filter.

Certain commands and builtins use the + to enabl e certain options and the -
to disable them. In parameter substitution, the + prefixesan alternate value
that a variable expands to.

modulo. Modulo (remainder of a division) arithmetic operation.

let "z =5 %3"
echo $z # 2

In adifferent context, the % is a pattern matching operator.

homedirectory[tilde]. Thiscorrespondstothe$HOME internal variable.
~bozo isbozo's home directory, and Is ~bozo lists the contents of it. ~/ is
the current user's home directory, and Is ~/ lists the contents of it.

bash$ echo ~bozo
/ hone/ bozo

bash$ echo ~
/ hone/ bozo

bash$ echo ~/
/ hone/ bozo/

bash$ echo ~:
/ hone/ bozo:

bash$ echo ~nonexi st ent-user
~nonexi st ent - user

current workingdirectory. Thiscorrespondsto the $PWD internal vari-
able.

previousworkingdirectory. Thiscorrespondsto the$SOLDPWD interna
variable.

regular expression match. This operator was introduced with version 3
of Bash.

Uppercase conversion in parameter substitution (added in version 4 of
Bash).

change the behavior of theterminal or text display. A control charac-
terisaCONTROL + key combination (pressed simultaneously). A control

18

Special Characters

character may also be written in octal or hexadecimal notation, following
an escape.

Control characters are not normally useful inside a script.
s OXI-A

Moves cursor to beginning of line of text (on the command-line).
s Ctl-B

Backspace (nondestructive).

ctl-C

Br eak. Terminate a foreground job.

Ctl-D
Log out from a shell (similar to exit).
EOF (end-of-file). This also terminatesinput from st di n.

When typing text on the console or in an xtermwindow, Ct | - Derasesthe
character under the cursor. When there are no characters present, Ct | -
D logs out of the session, as expected. In an xterm window, this has the
effect of closing the window.

« OtI-E
Moves cursor to end of line of text (on the command-line).
s CtI-F

Moves cursor forward one character position (on the command-line).

al-G

BEL . On some old-time teletype terminals, thiswould actually ring abell.
In an xterm it might beep.

cl-H

Rubout (destructive backspace). Erases charactersthe cursor backs over
while backspacing.

#!/ bi n/ bash
Enbedding Ctl-Hin a string.

a=""H'H' # Two Ctl-H s -- backspaces

19

Special Characters

ctl-V ctl-H using vi/vim

echo "abcdef" # abcdef

echo

echo -n "abcdef$a " # abcd f

Space at end ~ N Backspaces tw ce.

echo

echo -n "abcdef $a" # abcdef

No space at end N Doesn't backspace (why?).

Results may not be quite as expec
echo; echo

Const anti n Hagenei er suggests trying:
a=$'\ 010\ 010

a=$%$'\ b\ b’

a=$'\ x08\ x08'

But, this does not change the results.

H R

BREHHHHR AR AR AR
Now, try this.
rubout =" "H"H H"\H*\H' #5 x ¢l-H

echo -n "12345678"
sl eep 2
echo -n "$rubout"”
sl eep 2

Cl-1

Hori zontal tab.

cl-J

Newl i ne (linefeed). In ascript, may also be expressed in octal notation
--\012' or in hexadecimal -- '\x0a.

al-K
Vertical tab.

When typing text on the console or in an xterm window, Ct | - K erases
from the character under the cursor to end of line. Within a script, Ct | -
K may behave differently, asin Lee Lee Maschmeyer's example, below.

ctl-L

For nf eed (clear the terminal screen). In a terminal, this has the same
effect as the clear command. When sent to aprinter, aCt | - L causes an
advance to end of the paper sheet.

cl-M

20

Special Characters

Carriage return

#!/ bi n/ bash
Thank you, Lee Maschneyer, for this exanple.

read -n 1 -s -p\
$' Control -M | eaves cursor at beginning of this line. Press FEr
OF course, '0d" is the hex equivalent of Contro
echo >&2 # The '-s' makes anything typed silent,
#+ so it is necessary to go to new line explicitly

read -n 1 -s -p $ Control-J | eaves cursor on next line. \x0a
'0a is the hex equivalent of Control-J, linefe

echo >&2

fizzzzd

read -n 1 -s -p $ And Control - K\ xObgoes strai ght down.'
echo >&2 # Control-Kis vertical tab

A better exanple of the effect of a vertical tab is:

var=$'\x0aThis is the bottomI|ine\x0ObThis is the top Iine\x0e

echo "$var"
This works the same way as the above exanpl e. However:
echo "$var" | col

This causes the right end of the line to be higher than ttr
1t also explains why we started and ended with a line feec
#+ to avoid a garbl ed screen.
As Lee Maschmeyer expl ains:
In the [first vertical tab exanple] . . . the vertical tak
#+ makes the printing go straight down wi thout a carriage ret
This is true only on devices, such as the Linux console,
#+ that can't go "backward."
The real purpose of VI is to go straight UP, not down.
1t can be used to print superscripts on a printer
The col utility can be used to enul ate the proper behavi or
exit O

« CtI-N
Erases aline of text recalled from history buffer 8 (on the command-line).

« CI-0

I ssues a newline (on the command-line).

. Ql-P

8Bash storesalist of commands previously issued from the command-linein abuffer, or memory space, for recall with the builtin history commands.

21

Special Characters

Recalls last command from history buffer (on the command-line).
al-Q

Resume (XON).

Thisresumesst di n inaterminal.

al-R

Backwards search for text in history buffer (on the command-line).
cl-s

Suspend (XOFF).

Thisfreezesst di n inaterminal. (Use Ctl-Q to restore input.)
-7

Reverses the position of the character the cursor is on with the previous
character (on the command-line).

al-uU

Erase a line of input, from the cursor backward to beginning of line. In
some settings, Ct | - U erases the entire line of input, regardless of cursor
position.

cl-v

When inputting text, Ct | - V permitsinserting control characters. For ex-
ample, the following two are equivalent:

echo -e "\ x0a'
echo <Ctl-V><Ctl -J>

Ct | - Visprimarily useful from within atext editor.

al-wW

When typing text on the console or in an xterm window, Ct | - Weras-
es from the character under the cursor backwards to the first instance of
whitespace. In some settings, Ct | - Werases backwards to first non-al-
phanumeric character.

al-X

In certain word processing programs, Cuts highlighted text and copies to
clipboard.

-y
Pastes back text previously erased (withCt | - Uor Ct | - W.

al-z

22

Special Characters

Pauses a foreground job.
Substitute operation in certain word processing applications.
EOF (end-of-file) character in the MSDOS filesystem.

Whitespace functions as a separ ator between commands and/or variables. White-
space consists of either spaces, tabs, blank lines, or any combination thereof.
91n some contexts, such as variable assi gnment, whitespaceisnot permitted,
and results in asyntax error.

Blank lines have no effect on the action of a script, and are therefore useful
for visually separating functional sections.

$IFS, the special variable separating fields of input to certain commands. It
defaults to whitespace.

Definition: A field is a discrete chunk of data expressed as a
string of consecutive characters. Separating each field from adjacent
fields is either whitespace or some other designated character (often
determined by the $IFS). In some contexts, a field may be called a
record.

To preserve whitespace within a string or in avariable, use quoting.

UNIX filterscan target and operate on whitespace using the POSI X character
class[:spacel].

%A linefeed (newline) is also awhitespace character. This explains why a blank line, consisting only of alinefeed, is considered whitespace.

23

Chapter 4. Introduction to Variables
and Parameters

Variables are how programming and scripting languages represent data. A variable is nothing more than
alabel, a name assigned to alocation or set of locations in computer memory holding an item of data.

Variables appear in arithmetic operations and manipulation of quantities, and in string parsing.

Variable Substitution

The name of avariable is a placeholder for its value, the data it holds. Referencing (retrieving) its value
is called variable substitution.

$

Variable Assignment

Bash Variables Are Untyped

Unlike many other programming languages, Bash does not segregate its variables by “type.” Essentially,
Bash variables are character strings, but, depending on context, Bash permits arithmetic operations and
comparisons on variables. The determining factor is whether the value of a variable contains only digits.

Example 4.4. Integer or string?

#1/ bi n/ bash
int-or-string.sh

a=2334 # | nteger.
let "a += 1"
echo "a = $a " # a = 2335
echo # Integer, still.
b=${a/ 23/ BB} # Substitute "BB" for "23".
This transforms $b into a string.
echo "b = $b" # b = BB35
declare -i b # Declaring it an integer doesn't help.
echo "b = $b" # b = BB35
let "b += 1" # BB35 + 1
echo "b = $b" #b =1
echo # Bash sets the "integer value" of a string to O.

24

Introduction to Vari-
ables and Parameters

c=BB34

echo "¢ = $c" # c = BB34

d=%${ c/ BB/ 23} # Substitute "23" for "BB"
This makes $d an integer

echo "d = $d" # d = 2334

let "d += 1" # 2334 + 1

echo "d = $d" # d = 2335

echo

What about null vari abl es?

e="" # O e="" ... O e=

echo "e = $e" # e =

let "e += 1" # Arithmetic operations allowed on a null variabl e?
echo "e = $e" #e=1

echo # Null variable transfornmed into an integer.

\What about undecl ared vari abl es?

echo "f = $f" #f =

let "f += 1" # Arithmetic operations all owed?

echo "f = $f" #f =1

echo # Undecl ared variable transformed into an integer.
#

However

let "f /= $undecl _var" # Divide by zero?

let: f /=: syntax error: operand expected (error token is " ")
Syntax error! Variable $undecl _var is not set to zero here!

#

But still

let "f /= 0"

let: f /= 0: division by O (error token is "0")
Expected behavi or.

Bash (usually) sets the "integer value" of null to zero
#+ when performng an arithmetic operation.

But, don't try this at hone, folks!

1t's undocunented and probably non-portabl e behavior.

Conclusion: Variables in Bash are untyped,
#+ with all attendant consequences.

exit $?

Untyped variables are both a blessing and a curse. They permit more flexibility in scripting and make it
easier to grind out lines of code (and give you enough rope to hang yourself!). However, they likewise
permit subtle errorsto creep in and encourage sloppy programming habits.

To lighten the burden of keeping track of variable typesin a script, Bash does permit declaring variables.

Special Variable Types

Local vari abl es

25

Introduction to Vari-
ables and Parameters

Variables visible only within a code block or function (see also local
variablesin functions)

Envi ronnent al vari abl es
Variables that affect the behavior of the shell and user interface

Note

In a more general context, each process has an “environ-
ment”, that is, a group of variables that the process may
reference. In this sense, the shell behaves like any other
process.

Every time a shell starts, it creates shell variables that cor-
respond to its own environmental variables. Updating or
adding new environmental variables causes the shell to up-
dateits environment, and all the shell's child processes (the
commands it executes) inherit this environment.

Caution

The space dlotted to the environment is limited. Creating
too many environmental variables or ones that use up ex-
cessive space may cause problems.

bash$ eval "“seq 10000 | sed -e 's/.*/export var&=Z77Z,

bash$ du
bash: /usr/bin/du: Argunent list too |ong

Note: this“error” hasbeen fixed, asof kernel version 2.6.23.

(Thank you, Stéphane Chazelasfor the clarification, and for
providing the above example.)

If a script sets environmental variables, they need to be “exported,”
that is, reported to the environment local to the script. This is the
function of the export command.

Note

A script can export variablesonly to child processes, that is,
only to commands or processes which that particular script
initiates. A script invoked from the command-linecannot
export variables back to the command-line environment.
Child processes cannot export variables back to the parent
processes that spawned them.

Definition: A child processis a subprocess launched
by another process, its parent.

Posi tional paraneters

26

Introduction to Vari-
ables and Parameters

Arguments passed to the script from the command line 2: %0, $1,
$2,$3 ...

$0 is the name of the script itself, $1 is the first argument, $2 the
second, $3 the third, and so forth. 3 After $9, the arguments must
be enclosed in brackets, for example, ${ 10}, ${ 11}, ${ 12} .

The special variables$* and $@ denote all the positional parameters.

Example 4.5. Positional Parameters
#!/ bi n/ bash

Call this script with at | east 10 paraneters, for exanpl
./scriptname 1 2 3456 7 8 9 10
M NPARAMS=10

echo

echo "The nanme of this script is \"$0\"."

Adds ./ for current directory

echo "The nane of this script is \" basenanme $0°\"."
Strips out path nanme info (see 'basenane')

echo

if [-n"$1"] # Tested variable is quoted.
t hen

echo "Parameter #1 is $1" # Need quotes to escape #
fi

if [-n"$2"]
t hen

echo "Paraneter #2 is $2"
fi

if [-n "$3"]
t hen

echo "Paranmeter #3 is $3"
fi

...

°Note that functions also take positional parameters.
3The process calling the script sets the $0 parameter. By convention, this parameter is the name of the script. See the manpage (manual page)
for execv.

From the command-line, however, $0 is the name of the shell.

bash$ echo $0
bash

tcsh% echo $0
tcsh

27

Introduction to Vari-
ables and Parameters

if [-n"${10}"] # Paraneters > $9 nust be enclosed in |{
t hen

echo "Paraneter #10 is ${10}"

fi

echo "----------- i "
echo "Al'l the command-|ine paraneters are: "$*""

if [$# -1t "$M NPARAVS"]
t hen

echo

echo "This script needs at | east $M NPARAMS command- | i ne
fi

echo
exit O

Bracket notation for positional parameters leads to a fairly smple
way of referencing the last argument passed to a script on the com-
mand-line. This also requires indirect referencing.

ar gs=$# # Nunber of args passed.
| ast ar g=${! ar gs}
Note: This is an *indirect reference* to $args ...

O | ast ar g=%${! #} (Thanks, Chris Mbns
This is an *indirect reference* to the $# vari abl e.
Note that |astarg=${!$#} doesn't work.

Some scripts can perform different operations, depending on which
name they are invoked with. For this to work, the script needs to
check $0, the name it was invoked by. 4 There must also exist sym-
balic linksto all the alternate names of the script. See Example 16.2,
“Hello or Good-bye”.

Tip

If a script expects acommand-line parameter but isinvoked
without one, thismay causeanull variable assignment, gen-
erally an undesirable result. One way to prevent thisis to
append an extra character to both sides of the assignment
statement using the expected positional parameter.

variablel =$1_ # Rather than variabl el=%$1
This will prevent an error, even if positional paranetel

41 the the scri pt is sourced or symlinked, then thiswill not work. It is safer to check $BASH_Source.

28

Introduction to Vari-
ables and Parameters

critical _argunmentOl=$vari abl el_

The extra character can be stripped off later, like so.
vari abl el=${variablel_/_/}

Side effects only if $variablel_ begins with an undersce
This uses one of the parameter substitution tenplates di
(Leaving out the replacenent pattern results in a deleti

A nore straightforward way of dealing with this is
#+ to sinply test whether expected positional paraneters |
if [-z $1]
t hen
exit $E_M SSI NG_PCS_PARAM
fi

However, as Fabian Kreutz points out,

#+ the above nethod may have unexpected side-effects.
A better method is paraneter substitution:

${1: - $Def aul t Val }

See the "Paraneter Substition” section

#+ in the "Variabl es Revisited" chapter.

Example 4.6. wh, whois domain name lookup

#!/ bi n/ bash
ex18. sh

Does a 'whoi s domai n-nane' | ookup on any of 3 alternate

ri pe.net, cw net, radb.net

Place this script -- renamed "wh' -- in /usr/local/bin
Requires synbolic |inks:

1n -s fusr/local/bin/wh /[usr/local/bin/wh-ripe

1n -s [fusr/local/bin/wh /usr/local/bin/wh-apnic

1n -s /usr/local/bin/wh /usr/local/bin/wh-tucows
E_NOARGS=75

if [-z "$1"]

t hen

echo "Usage: "basenane $0° [donai n-nane]"
exit $E_NOARGS
fi

Check script name and call proper server.

case " basenane $0° in # O: case ${O##*/} in
"wh") whoi s $1@hoi s.tucows. coni;
"wh-ripe") whois $1@hois.ripe.net;;
"wh-apni c") whois $1@hois. apnic. net;;

29

Introduction to Vari-
ables and Parameters

"wh-cw') whois $1@hois. cw. net;;
*) echo "Usage: " basenanme $0° [domai n-nane]’
esac

exit $?

The shift command reassigns the positional parameters, in effect
shifting them to the | eft one notch.

$1 <---$2, $2 <--- $3, $3 <--- $4, etc.

The old $1 disappears, but $0 (the script name) does not change. If
you use alarge number of positional parametersto ascript, shift lets
you access those past 10, although { bracket} notation also permits
this.

Example 4.7. Using shift

#! / bi n/ bash
shft.sh: Using 'shift' to step through all the position:

Nanme this script something like shft.sh,

#+ and invoke it with sone paraneters.

#+ For exanpl e:

sh shft.sh a b ¢ def 83 barndoor

until [-z "$1"] # Until all paranmeters used up .
do

echo -n "$1 "

shift
done

echo # Extra |inefeed.

But, what happens to the "used-up" paraneters?

echo "$2"

Not hi ng echoes!

When $2 shifts into $1 (and there is no $3 to shift int
#+ then $2 remmins enpty.

So, it is not a parameter *copy*, but a *nove*.

exit

See al so the echo-params.sh script for a "shiftless"
#+ alternative method of stepping through the positional |

The shift command can take a numerical parameter indicating how
many positions to shift.

#!/ bi n/ bash
shift-past.sh

30

Introduction to Vari-
ables and Parameters

shift 3 # Shift 3 positions.
n=3; shift $n
Has the sane effect.

echo "$1"

exit O

$ sh shift-past.sh 1 2 3 45
4

However, as El eni Fragkiadaki, points out,
#+ attenpting a 'shift' past the number of
positional paraneters ($#) returns an exit status of 1,

3+
+

#+ and the positional paraneters thensel ves do not change.
This neans possibly getting stuck in an endl ess | oop.
For exanple:
until [-z "$1"]
do
echo -n "$1 "
shift 20 # |If less than 20 pos parans,
done #+ then | oop never ends!
#
When in doubt, add a sanity check.
shift 20 || break
NNNNANNNNN
Note

The shift command works in a similar fashion on parame-
ters passed to afunction. See Example 36.18, “ Return value
trickery”.

31

Chapter 5. Quoting

Quoting meansjust that, bracketing a string in quotes. This has the effect of protecting special characters
inthe string from reinterpretation or expansion by the shell or shell script. (A character is“ specia” if it has
an interpretation other than itsliteral meaning. For example, the asterisk * representsawild card character
in globbing and Regular Expressions).

bash$ Is -1 [W]*

STWPWAT - - 1 bozo bozo 324 Apr 2 15:05 VI EWDATA. BAT
STWPWAT - - 1 bozo bozo 507 May 4 14:25 vartrace. sh
STWPWAT - - 1 bozo bozo 539 Apr 14 17:11 vi ewdata. sh

bash$ Is -1 "'[W]*'

I's: [W]*: No such file or directory

In everyday speech or writing, when we“ quote” aphrase, we set it apart and giveit special meaning.
In a Bash script, when we quote a string, we set it apart and protect its literal meaning.

Certain programs and utilities reinterpret or expand special characters in a quoted string. An important
use of quoting is protecting acommand-line parameter from the shell, but still |etting the calling program
expand it.

bash$ grep '[Ff]irst' *.txt
filel.txt:This is the first line of filel.txt.
file2.txt:This is the First line of file2.txt.

Note that theunquotedgrep [Ff]irst *.txt worksunder the Bash shell. !
Quoting can also suppress echo's “ appetite” for newlines.

bash$ echo $(Is -1)
total 8 -rwrwr-- 1 bo bo 13 Aug 21 12:57 t.sh -rwrwr-- 1 bo bo 78 Aug 21 12:57

bash$ echo "$(Is -I)"

total 8

-rwrwr-- 1 bo bo 13 Aug 21 12:57 t.sh
-rwrwr-- 1 bo bo 78 Aug 21 12:57 u.sh

Quoting Variables

When referencing avariable, it is generally advisable to enclose its name in double quotes. This prevents
reinterpretation of all special characters within the quoted string -- except $, * (backquote), and \ (escape).
2 Keeping $ as aspecial character within double quotes permits referencing a quoted variable (" $var i -

:Unlessthere isafilenamedf i r st inthecurrent working directory. Y et another reason to quote. (Thank you, Harald Koenig, for pointing this out.

32

Quoting

abl e"), that is, replacing the variable with its value (see Example 4.1, “Variable assignment and substi-

tution”, above).

Use double quotes to prevent word splitting. 3 An argument enclosed in double quotes presents itself as
asingleword, evenif it contains whitespace separators.

Li st="one two three"

for a in $List
do

echo "$a"
done
one
two
three

echo

for ain "$List"
do # A A

Splits the variable in parts at whitespace.

Preserves whitespace in a single variable.

Encapsulating “!” within double quotes gives an error when used from the command line. Thisisinterpreted as a history command. Within a script,
though, this problem does not occur, since the Bash history mechanism is disabled then.

Of more concern is the apparently inconsistent behavior of \ within double quotes, and especially following an echo -e command.

bash$ echo
hel | o!
bash$ echo
hel | o\'!

bash$ echo
>

bash$ echo
>

bash$ echo
a

bash$ echo
\a

bash$ echo
Xty
bash$ echo
x\ty

bash$ echo
xty

bash$ echo
X y

hel I o\'!

"hello\!"

e
\a

" g

x\ty

"X\ ty"

-e x\ty

-e "x\ty"

Double quotes following an echo sometimes escape\ . Moreover, the - e option to echo causes the “\t” to be interpreted as a tab.

gThank you, Wayne Pollock, for pointing this out, and Geoff Lee and Daniel Barclay for explaining it.)
“Word splitting,” in this context, means dividing a character string into separate and discrete arguments.

33

Quoting

echo "%$a"
done
one two three

A more elaborate example:

vari abl el="a variabl e containing five words"
COWAND This is $variabl el # Executes COVMAND with 7 arguments:
"This" "is" "a" "variable" "containing" "five" "words"

COWAND "This is $variablel" # Executes COWAND with 1 argument:
"This is a variable containing five words"

vari abl e2= # Enpty.

COWAND $vari abl e2 $vari abl e2 $vari abl e2

Executes COVMAND with no argunents.
COWAND " $vari abl e2" "$vari abl e2" "$vari abl e2"

Executes COVMAND with 3 enpty argunents.
COWAND " $vari abl e2 $vari abl e2 $vari abl e2"

Executes COVMAND with 1 argument (2 spaces).

Thanks, Stéphane Chazel as.
Tip

Enclosing the arguments to an echo statement in double quotes is necessary only when word
splitting or preservation of whitespace is an issue.

Example5.1. Echoing Weird Variables

#1/ bi n/ bash
weirdvars.sh: Echoing weird vari abl es.

echo

var="" (J\\{}\$\""
echo $var #'(1\{}%
echo "$var" #(]\V{}1$" Doesn't neke a difference.

echo
| FS="\"

echo $var

#'(] {19 \ converted to space. Wy?
echo "$var" #(]\V{}1$"

Exanpl es above supplied by Stephane Chazel as.

echo

var2="\\\\\""

echo $var2 # "
echo "S$var2" #\\"

Quoting

echo

But ... var2="\\\\"" is illegal. Wy?
var 3="\\\\"'

echo "$var 3" # \\\\

Strong quoting works, though.

hkhkhkkhkhkhhkhkhhhhhhkhhhkhhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhdhdhdhhddhrddrrdrxdk

As the first exanple above shows, nesting quotes is permtted.

echo "$(echo """)" # "
N N

At tines this cones in useful.

var1="Two bits"
echo "\$varl = "$var1"" # $varl = Two bits
N N

Or, as Chris Hiestand points out

if [["$(du "$My_Filel")" -gt "$(du "$SMy_File2")" 1]
N N N N N N N N

t hen

fi

hkhkhkkhkhkhhkhkhhhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhdhdddhhddrddhrrdrxd*x

Single quotes (' ") operate similarly to double quotes, but do not permit referencing variables, since the
specia meaning of $is turned off. Within single quotes, every special character except ' gets interpreted
literally. Consider single quotes (“full quoting”) to be a stricter method of quoting than double quotes
(“partia quoting”).

Note

Since even the escape character (\) gets a literal interpretation within single quotes, trying to
enclose a single quote within single quotes will not yield the expected result.

echo "Why can't | wite 's between single quotes”
echo

The roundabout nethod.
echo "Way can'\'"'"t | wite s between single quotes'

#o[eneees | e |l |

Three single-quoted strings, with escaped and quoted single quotes between.

This exanple courtesy of Stéphane Chazel as.

Escaping

Escaping is a method of quoting single characters. The escape (\) preceding a character tells the shell to
interpret that character literally.

35

Quoting

Caution

With certain commands and utilities, such as echo and sed, escaping a character may have the

opposite effect - it can toggle on a specia meaning for that character.

Special meanings of certain escaped characters

used with echo and sed

\n
\r
\t
\v
\b
\a

\Oxx

\$
\\

Note

The behavior of \ depends on whether it is escaped, strong-quoted, weak-quoted, or appearing

within command substitution or a here document.

Sinple escaping and quoting
echo \z # z
echo \\z # \z
echo '\ z' # \z
echo "\\z' # \\z
echo "\z" # \z
echo "\\z" # \z
Command substitution
echo “echo \z° # z
echo “echo \\z° # z
echo “echo \\\z® #\z
echo “echo \\\\Zz° #\z
echo “echo \\\\\\zZ° #\z
echo “echo \\\\\\\z" # \\z
echo “echo "\z"° #\z
echo “echo "\\z"" #\z
Here docunent
cat <<ECF
\z
ECF #\z
cat <<ECF
\\ Z
ECF #\z 36

These exanpl es supplied by Stéphane Chazel as.

Quoting

echo "$vari abl e"

WIl not work - gives an error nessage:

test.sh: : comand not found

A "naked" escape cannot safely be assigned to a variable.

#

\What actually happens here is that the "\" escapes the new ine and

#+ the effect is vari abl ezecho "$vari abl e"
#+ i nvalid vari abl e assi gnnent
vari abl e=\

23ski doo

echo "$vari abl e" # 23ski doo

This works, since the second |ine
#+ is a valid variabl e assignnent.

vari abl e=\
\ A escape foll owed by space
echo "$vari abl e" # space

vari abl e=\'\
echo "$vari abl e" #\

vari abl e=\\\

echo "$vari abl e"

WIl not work - gives an error nessage:

test.sh: \: conmand not found

#

First escape escapes second one, but the third one is |left "naked",
#+ with sanme result as first instance, above.

vari abl e=\\\\

echo "$vari abl e" #\\
Second and fourth escapes escaped.
This is o.k.

Escaping a space can prevent word splitting in a command's argument list.

file_list="/bin/cat /bin/gzip /bin/nore /usr/bin/less /usr/bin/emcs-20.7"
List of files as argunent(s) to a comand.

Add two files to the list, and list all.
I's -1 /usr/X11R6/ bi n/ xsetroot /sbin/dump $file_list

What happens if we escape a couple of spaces?

I's -1 /usr/X11R6/ bi n/ xsetroot\ /sbin/dunp\ $file_list

Error: the first three files concatenated into a single argunment to 'Is -1
because the two escaped spaces prevent argunment (word) splitting.

The escape also provides a means of writing a multi-line command. Normally, each separate line consti-
tutes a different command, but an escape at the end of aline escapes the newline character, and the com-
mand sequence continues on to the next line.

37

Quoting

(cd /source/directory & tar cf - .) | \

(cd /dest/directory && tar xpvf -)

Repeating Alan Cox's directory tree copy command,
but split into two lines for increased legibility.

As an alternative:

tar cf - -C /source/directory .
tar xpvf - -C /dest/directory
See note bel ow.

(Thanks, Stéphane Chazel as.)

Note

If ascript line ends with a |, a pipe character, then a\, an escape, is not strictly necessary. It is,
however, good programming practice to always escape the end of aline of code that continues
to the following line.

echo "foo
bar"
#f oo

#bar
echo

echo 'foo

bar'’ # No difference yet.
#f oo

#bar

echo

echo f oo\

bar # New i ne escaped.

#f oobar

echo

echo "f oo\

bar " # Same here, as \ still interpreted as escape wthin weak quotes.
#f oobar

echo

echo ' f oo\

bar'’ # Escape character \ taken literally because of strong quoting.
#f oo\

#bar

Exanpl es suggested by St éphane Chazel as.

38

Chapter 6. Exit and Exit Status

... there are dark cornersin the Bourne shell, and people use al of them.
--Chet Ramey

The exit command terminates a script, just asin a C program. It can also return a value, which is
available to the script's parent process.

Every command returns an exit status (sometimes referred to as a return status or exit code). A
successful command returns a 0, while an unsuccessful one returns a non-zero value that usually can be

interpreted as an error code. Well-behaved UNIX commands, programs, and utilities return a0 exit code
upon successful completion, though there are some exceptions.

Likewise, functions within a script and the script itself return an exit status. The last command executed
in the function or script determines the exit status. Within ascript, anexi t nnn command may be used
to deliver an nnn exit status to the shell (nnn must be an integer in the 0 - 255 range).

Note

When a script ends with an exit that has no parameter, the exit status of the script isthe exit status
of the last command executed in the script (previous to the exit).

#!/ bi n/ bash

COVVAND 1

COVWAND_LAST

WII exit with status of |ast command.

exit

The equivalent of abare exit is exit $? or even just omitting the exit.

#!/ bi n/ bash

COMVAND_1

COMVAND_LAST

WIIl exit with status of last conmand.
exit $?

#1/ bi n/ bash

COMVANDL

39

Exit and Exit Status

COMVAND_LAST

WIIl exit with status of |ast conmand.

$7? reads the exit status of the last command executed. After afunction returns, $? givesthe exit status
of the last command executed in the function. Thisis Bash'sway of giving functions a“return value.” *

Following the execution of a pipe, a$? givesthe exit status of the last command executed.

After a script terminates, a $? from the command-line gives the exit status of the script, that is, the last
command executed in the script, which is, by convention, O on success or an integer in the range 1 - 255
on error.

Example6.1. exit / exit status

#!/ bi n/ bash

echo hello

echo $? # Exit status O returned because comuand executed successful ly.
| skdf # Unrecogni zed comuand.

echo $? # Non-zero exit status returned -- conmand failed to execute.
echo

exit 113 # WII return 113 to shell.
To verify this, type "echo $?" after script term nates.

By convention, an 'exit 0' indicates success,
#+ while a non-zero exit value nmeans an error or anomal ous condition.
See the "Exit Codes Wth Special Meanings" appendi Xx.

$?isespecialy useful for testing the result of acommand in a script (see Example 16.35, “Using cmp to
compare two files within a script.” and Example 16.20, “ Checking wordsin alist for validity™).

Note

The'!, the logical not qualifier, reverses the outcome of atest or command, and this affects its
exit status.

Example 6.2. Negating a condition using !

true # The "true" builtin

echo "exit status of \"true\" = $?" #0

I true

echo "exit status of \"! true\" = $?" # 1

Note that the "!" needs a space between it and the conmand.

1In those instances when there is no return terminating the function.

40

Exit and Exit Status

I'true | eads to a "command not found" error

#

The '!' operator prefixing a command i nvokes the Bash history mechani sm
true

I'true

No error this tine, but no negation either.
It just repeats the previous comand (true).

===
Preceding a _pipe_ with ! inverts the exit status returned.
I's | bogus_command # bash: bogus_conmand: command not found
echo $? # 127

I I's | bogus_comand # bash: bogus_conmand: command not found
echo $? # 0

Note that the ! does not change the execution of the pipe.

Only the exit status changes.

Thanks, Stéphane Chazel as and Kri st opher Newsone.

Caution

Certain exit status codes have reserved meanings and should not be user-specified in a script.

41

Chapter 7. Tests

Test

Constructs

Every reasonably complete programming language can test for a condition, then act according to the result
of thetest. Bash hasthetest command, various bracket and parenthesis operators, and theif/then construct.

An if/then construct tests whether the exit status of alist of commands is 0 (since O means “success”

by UNIX convention), and if so, executes one or more commands.

There exists adedicated command called [(left bracket specia character). It isasynonym for test, and

a builtin for efficiency reasons. This command considers its arguments as comparison expressions or
file tests and returns an exit status corresponding to the result of the comparison (O for true, 1 for false).

Withversion 2.02, Bash introduced the[][...]] extended test command, which performs comparisonsina

manner more familiar to programmers from other languages. Note that [[is akeyword, not acommand.

Bashsees[[$a -1t $b]] asasingle element, which returns an exit status.

The ((...)) and let ... constructs return an exit status, according to whether the arithmetic expressions
they evaluate expand to a non-zero value. These arithmetic-expansion constructs may therefore be used

to perform arithmetic comparisons.

((0&& 1))

echo $? # 1 * kK
And so ...

let "num= ((0 & 1))"
echo $num # O

But
let "num=((0 & 1))"
echo $? # 1 * kK

((200 || 11))

echo $? #0 *x ok

...

let "num= ((200 || 11))"
echo $num # 1

let "num= ((200 || 11))"
echo $? #0 *x ok

((200 | 11))

echo $?

...

let "num= ((200 | 11))"
echo $num

let "num= ((200 | 11))"

Logi cal AND

Logical OR

Bitw se OR
#0 * % %

203

42

Tests

echo $? # 0 * Kk x

The "let" construct returns the same exit status
#+ as the doubl e-parentheses arithnetic expansion

Caution

Again, note that the exit status of an arithmetic expression is not an error value.

var=-2 && ((var+=2))
echo $? # 1

var=-2 && ((var+=2)) && echo $var
WIIl not echo $var

An if can test any command, not just conditions enclosed within brackets.

if cnp ab & /dev/null # Suppress output.
then echo "Files a and b are identical."

el se echo "Files a and b differ."

fi

The very useful "if-grep" construct:
if grep -q Bash file
then echo "File contains at | east one occurrence of Bash."

fi

wor d=Li nux
| etter_sequence=inu

if echo "$word" | grep -q "$letter_sequence”
The "-q" option to grep suppresses output.
t hen

echo "$l etter_sequence found in $word"
el se

echo "$letter_sequence not found in $word"
fi

i f COMVAND WHOSE EXI T_STATUS |'S 0 UNLESS ERROR OCCURRED
t hen echo "Command succeeded. "
el se echo "Command failed."

fi

» Theselast two examples courtesy of Séphane Chazelas.
Example 7.1. What istruth?

#!/ bi n/ bash

Tip:
|If you're unsure how a certain condition m ght eval uate,
#+ test it in an if-test.

43

Tests

echo

echo "Testing \"0O\""

if [0] # zero
t hen
echo "0 is true."
el se # O else ..
echo "0 is false.”
fi # 0 is true.
echo

echo "Testing \"1\""

if [1] # one
t hen
echo "1 is true."
el se
echo "1 is false.”
fi # 1 is true.
echo

echo "Testing \"-1\""

if [-1] # m nus one
t hen

echo "-1 is true."
el se

echo "-1 is false."
fi # -1 is true
echo

echo "Testing \"NULL\""

if [] # NULL (enpty condition)
t hen
echo "NULL is true."
el se
echo "NULL is false."
fi # NULL is fal se.
echo

echo "Testing \"xyz\
if [xyz] # string
t hen
echo "Random string is true."
el se
echo "Random string is false."
fi # Random string is true.

echo

echo "Testing \"\$xyz\

Tests

if [$xyz] # Tests if $xyz is null, but..
#it's only an uninitialized vari able.

t hen
echo "Uninitialized variable is true."
el se
echo "Uninitialized variable is false."
fi # Uninitialized variable is fal se
echo

echo "Testing \"-n \$xyz\

if [-n "$xyz"] # More pedantically correct.
t hen
echo "Uninitialized variable is true."
el se
echo "Uninitialized variable is false.”
fi # Uninitialized variable is fal se
echo
Xyz= # Initialized, but set to null value

echo "Testing \"-n \$xyz\
if [-n"$xyz"]

t hen
echo "Null variable is true."
el se
echo "Null variable is false.”
fi # Null variable is fal se.
echo

When is "fal se" true?

echo "Testing \"fal se\

if ["false"] # 1t seenms that "false"” is just a string ..
t hen
echo "\"false\" is true." #+ and it tests true.
el se
echo "\"false\" is false."
fi # "false" is true.
echo
echo "Testing \"\$false\"" # Again, uninitialized variable.
if ["$false"]
t hen
echo "\"\$false\" is true."
el se
echo "\"\$false\" is false."
fi # "$false" is fal se

45

Tests

Now, we get the expected result.
What woul d happen if we tested the uninitialized variable "$true"?
echo

exit O

Exercise. Explain the behavior of Example 7.1, “What is truth?’, above.

if [condition-true]
t hen

comand 1

comand 2

else # O else ...
Adds default code block executing if original condition tests fal se.
conmand 3
conmrand 4

fi
Note

When if and then are on same linein a condition test, a semicolon must terminate the if statement.
Both if and then are keywords. Keywords (or commands) begin statements, and before a new
statement on the same line begins, the old one must terminate.

if [-x "$filenane"]; then
Elseif and dif

eif el i f isacontractionfor elseif. The effect isto nest an inner if/then construct within an outer one.

if [conditionl]
t hen
commandl
command2
command3
elif [condition2]
Sane as else if
t hen
command4
command5
el se
def aul t - command
fi

Thei f test condition-trueconstructistheexactequivalentofi f [condition-true].
Asit happens, the left bracket, [, isatoken ! which invokes the test command. The closi ng right bracket,
], in anif/test should not therefore be strictly necessary, however newer versions of Bash requireit.

IA tokenis asymbol or short string with a special meaning attached to it (a meta-meaning). In Bash, certain tokens, such as[and . (dot-command),
may expand to keywords and commands.

46

Tests

Note

The test command is a Bash builtin which tests file types and compares strings. Therefore, in a
Bash script, test doesnot call theexternal / usr / bi n/ t est binary, whichispart of the sh-utils
package. Likewise, [doesnot call / usr/ bi n/ [, whichislinkedto/ usr/ bi n/test.

bash$ type test

test is a shell builtin
bash$ type '[°

[is a shell builtin
bash$ type '"[[’

[[is a shell keyword
bash$ type ']]"'

]] is a shell keyword
bash$ type ']’

bash: type:]: not found

If, for some reason, you wishto use/ usr/ bi n/ t est in aBash script, then specify it by full
pathname.

Example 7.2. Equivalence of test, / usr/ bi n/ test,[],and/ usr/ bin/ [
#!/ bi n/ bash
echo

if test -z "$1"
t hen
echo "No command-1|ine argunments.”
el se
echo "First command-line argunment is $1."
f

echo
if /usr/bin/test -z "$1" # Equivalent to "test" builtin.
#NANNNANNANNNNA # Specifying full pathnane.
t hen
echo "No command-1|ine arguments.”
el se

echo "First command-line argunent is $1."
f

echo
if [-z "$1"] # Functionally identical to above code bl ocks.

if [-z "$1" shoul d work, but..
#+ Bash responds to a mssing close-bracket with an error nessage.

47

Tests

t hen
echo "No command-1|ine argunments.”
el se
echo "First comand-line argunment is $1."
fi
echo
if /fusr/bin/[-z "$1"] # Again, functionally identical to above
#if Jusr/bin/[-z "$1" # Works, but gives an error nessage.
Not e:
This has been fixed in Bash, version 3.x.
t hen
echo "No command-1|ine argunments.”
el se
echo "First command-line argunment is $1."
fi
echo
exit O

48

Tests

The [[]] construct is the more versatile Bash version of []. This is the extended test command,
adopted from ksh88.

* % %

No filename expansion or word splitting takes place between [[and]], but there is parameter ex-
pansion and command substitution.

file=/etc/passwd

if [[-e $file]]
t hen

echo "Password file exists."
fi

Using the [[...]] test construct, rather than [...] can prevent many logic errors in scripts. For
example, the &&, ||, <, and > operators work within a [[]] test, despite giving an error within a
[] construct.

Arithmetic evaluation of octal / hexadecimal constants takes place automatically within a[[... 1]
construct.

[[Cctal and hexadeci mal eval uation]]
Thank you, Mritz Gonbach, for pointing this out.

deci nal =15
oct al =017
hex=0x0f

= 15 (deci mal)
= 15 (deci mal)
if ["$decimal" -eq "$octal"]
t hen
echo "$deci mal equal s $octal "
el se
echo "$deci mal is not equal to S$octal" # 15 is not equal to
fi # Doesn't evaluate within [single brackets]!

if [["$decimal" -eq "$octal"]

t hen

echo "$deci mal equal s $octal " # 15 equal s 017
el se

echo "$deci mal is not equal to S$octal"
fi # Evaluates within [[double brackets]]!

if [["$decimal" -eq "$hex" 1]

t hen

echo "$deci mal equal s $hex" # 15 equal s OxOf
el se

echo "$deci mal is not equal to $hex"
fi # [[$hexadecimal]] al so eval uates!

49

017

Tests

Note

Following anif, neither the test command nor thetest brackets ([] or [[]]) are strictly necessary.

di r=/ hone/ bozo

if cd "$dir" 2>/dev/null; then # "2>/dev/null" hides error nessage.
echo "Now in $dir."
el se

echo "Can't change to $dir."
fi

The"if COMMAND" construct returns the exit status of COMMAND.

Similarly, a condition within test brackets may stand alone without an if, when used in combina-
tion with alist construct.

var 1=20
var 2=22
["$varl" -ne "$var2"] && echo "$varl is not equal to $var2"

hone=/ hone/ bozo
[-d "$hone"] || echo "$honme directory does not exist."

The (()) construct expands and evaluates an arithmetic expression. If the expression evaluates as zero, it
returns an exit status of 1, or “false”. A non-zero expression returns an exit status of 0, or “true”’. Thisis
in marked contrast to using the test and [] constructs previously discussed.

Example 7.3. Arithmetic Testsusing (())

#! / bi n/ bash
arith-tests. sh
Arithnetic tests.

The ((...)) construct evaluates and tests numerical expressions.
Exit status opposite from[...] construct!

(€ 0))

echo "Exit status of \"((0))\" is $2." # 1

(€ 1))

echo "Exit status of \"((1))\" is $2." # 0

((5>4)) # true
echo "Exit status of \"((5 >4))\" is $2." # 0

((5>9)) # fal se
echo "Exit status of \"((5 >9))\" is $2." # 1

((5==05)) # true
echo "Exit status of \"((5 ==5))\" is $2." # 0

((5=5)) gives an error nessage.

(C(5-5)) #0

50

Tests

echo "Exit status of \"((5 - 5))\" is $2." #1
(¢ 57 4)) # Division o.Kk.
echo "Exit status of \"((5/ 4))\" is $2." # 0
(17 2)) # Division result < 1.
echo "Exit status of \"((1/ 2))\" is $2." # Rounded off to O.
1
((1/ 0)) 2>/ dev/null # 11l egal division by O.
NNANNNNNNNNANNN
echo "Exit status of \"((1/ 0))\" is $2." #1
What effect does the "2>/dev/null"™ have?

What woul d happen if it were renoved?
Try renoving it, then rerunning the script.

((...)) also useful in an if-then test.

var 1=5
var 2=4

if ((varl > var2))

then # " Note: Not $varl, $var2. Wy?
echo "$varl is greater than $var2"

fi # 5 is greater than 4

exit O

File test operators

Returnstrueif...
-e file exists
-a file exists
Thisisidentical in effect to -e. It has been “deprecated,” 2 and its use is discouraged.
-f fileisar egul ar file(not adirectory or devicefile)

-S fileisnot zero size

2 Per the 1913 edition of Webster's Dictionary:

Deprecate

To pray against, as an evil;
to seek to avert by prayer;
to desire the renoval of;
to seek deliverance from
to express deep regret for;
to di sapprove of strongly.

51

Tests

fileisadirectory

fileisablock device

fileis acharacter device

devi ce0="/dev/ sda2" # / (root directory)
if [-b "$device0"]
t hen

echo "$deviceO is a block device."
fi

/dev/sda2 is a bl ock device.

devi cel="/dev/ttyS1" # PCMCI A nodem card.
if [-c "$devicel"]
t hen
echo "$devicel is a character device."
fi

/dev/ttySl is a character device.
fileisapipe

function show_ i nput _type()

{
}

[-p /dev/fd/0] && echo PIPE || echo STDIN
show i nput _type "I nput"
echo "Input" | show_input _type
Thi s exanpl e courtesy of Carl Anderson.
fileisasymboalic link
fileisasymboalic link
fileis asocket

file (descriptor) is associated with aterminal device

Thistest option may be used to check whether thest din[-t 0] orstdout [

t 1] inagivenscriptisaterminal.

file has read permission (for the user running the test)
file has write permission (for the user running the test)
file has execute permission (for the user running the test)

set-group-id (sgid) flag set on file or directory

52

Tests

If adirectory hasthesgi d flag set, then afile created within that directory belongsto the
group that ownsthe directory, not necessarily to the group of the user who created thefile.
This may be useful for a directory shared by aworkgroup.

set-user-id (suid) flag set on file

A binary owned by root withset - user - i d flag set runswith root privileges, even when
an ordinary user invokesit. 3 Thisis useful for executables (such as pppd and cdrecord)
that need to access system hardware. Lacking the suid flag, these binaries could not be
invoked by a non-root user.

-FWSr-Xr-t 1 root 178236 Cct 2 2000 /usr/sbin/pppd

A filewith the sui d flag set showsan sin its permissions.
-k sticky bit set

Commonly known asthe sticky bit, the save-text-mode flag isaspecial type of file permis-
sion. If afile has thisflag set, that file will be kept in cache memory, for quicker access.
41 set on adi rectory, it restricts write permission. Setting the sticky bit adds a t to the
permissions on the file or directory listing. This restricts altering or deleting specific files
in that directory to the owner of thosefiles.

dr wxr wxr wt 7 root 1024 May 19 21:26 tnp/

If a user does not own a directory that has the sticky bit set, but has write permission in
that directory, she can only delete those files that she owns in it. This keeps users from
inadvertently overwriting or deleting each other's files in a publicly accessible directory,
such as/ t np. (The owner of the directory or root can, of course, delete or rename files
there))

-0 you are owner of file

-G group-id of file same as yours

-N file modified since it was last read

fl-ntf2 filef 1 isnewer thanf 2

fl-otf2 filef 1 isolder thanf 2

f1-ef f2 filesf 1 and f 2 are hard links to the samefile

! “not” -- reverses the sense of the tests above (returns true if condition absent).

Example 7.4. Testing for broken links

#! / bi n/ bash

3Be aware that stid binaries may open security holes. The suid flag has no effect on shell scripts.
40n Linux systems, the sticky bit is no longer used for files, only on directories.

53

Tests

broken-Iink.sh
Witten by Lee bigel ow <ligel owbee@ahoo. conr
Used in ABS Guide with perm ssion

A pure shell script to find dead sym inks and output them quoted
so they can be fed to xargs and dealt with :)
eg. sh broken-link.sh /sonedir /soneotherdir]|xargs rm

+ +

This, however, is a better nethod:

find "sonmedir" -type | -printO]\

xargs -r0 file|\

grep "broken synbolic"|

sed -e 's/™\|: *broken synbolic.*$/"/g

+

but that wouldn't be pure Bash, now would it.
Caution: beware the /proc file systemand any circul ar |inks!
HERHHHHH T H T H R H R H R R

HHFHHHFHHHHHF TR

|If no args are passed to the script set directories-to-search
#+ to current directory. Oherw se set the directories-to-search
#+ to the args passed.
HERHHHHH AT

[$# -eq 0] & & directorys=pwd" || directorys=$@

Setup the function |inkchk to check the directory it is passed
#+ for files that are links and don't exist, then print them quoted.
|If one of the elenments in the directory is a subdirectory then
#+ send that subdirectory to the linkcheck function

HUBHHHHHHH
linkchk () {
for element in $1/*; do
[-h "$elenent” -a ! -e "$elenent”] && echo \"$el enent\"
[-d "$elenment”] && linkchk $el enent
O course, '-h' tests for synmbolic link, '-d for directory.
done
}
Send each arg that was passed to the script to the linkchk() function
#+ if it is avalid directoy. |If not, then print the error nessage
#+ and usage i nfo.
HUBHSHSEH SRR R R

for directory in $directorys; do
if [-d $directory]
then |inkchk $directory
el se
echo "$directory is not a directory"
echo "Usage: $0 dirl dir2 ..."
f
done

Tests

exit $?
Example 31.1, “Hiding the cookie jar”, Example 11.8, “A grep replacement for binary files’, Exam-

ple 11.3, “Fileinfo: operating on afilelist contained in avariable’, Example 31.3, “Creating a ramdisk”,
and Example A.1, “ mailformat: Formatting an e-mail message” alsoillustrate uses of thefiletest operators.

Other Comparison Operators

A binary comparison operator compares two variables or quantities. Note that integer and string compar -
ison use a different set of operators.

integer comparison
-eq isequal to
if ["$a" -eq "$b"]
-ne isnot equal to
if ["$a" -ne "$b"]
-gt isgreater than
if ["$a" -gt "$b"]
-ge isgreater than or equa to
if ["$a" -ge "$b"]
-It islessthan
if ["$a" -1t "$b"]
-le islessthan or equal to
if ["$a" -le "$b"]
< isless than (within double parentheses)
(("%$a" < "$b"))
<= islessthan or equal to (within double parentheses)
(("$a" <= "$b"))
> is greater than (within double parentheses)
(("$a" > "$b"))
>= isgreater than or equal to (within double parentheses)

(("$a" >= "$b"))

string comparison

55

Tests

isequal to
if ["$a" = "$b"]
Caution
Note the whitespace framing the =.
if ["$a"="$b"] isnotequivalent tothe above.
isequal to
if ["$a" == "$b"]
Thisisasynonym for =.
Note

The == comparison operator behaves differently within a double-brackets test than within
single brackets.

[[$a == z*]] # True if $a starts with an "z" (pattern matching).
[[$a == "z*"]] # True if $a is equal to z* (literal matching).

[$a == z*] # File gl obbing and word splitting take place.

["$a" == "z*"] # True if $a is equal to z* (literal matching).

Thanks, Stéphane Chazel as
isnot equal to
if ["$a" !'= "$b"]
This operator uses pattern matching within a[][...]] construct.
islessthan, in ASCI| aphabetical order
if [["$a" < "$b" 1]
if ["$a" \< "$b"]
Note that the “<” needs to be escaped withina[] construct.
is greater than, in ASCI| alphabetical order
if [["$a" > "$b" 1]
if ["$a" \> "$b"]
Note that the “>" needs to be escaped withina[] construct.
See Example 27.11, “ The Bubble Sort” for an application of this comparison operator.
string is null, that is, has zero length

String="" # Zero-length ("null") string variable.

56

Tests

if [-z "$String"]

t hen

echo "\$String is null."
el se

echo "\$String is NOT null."
fi # $String is null.

-n stringisnot null.

Caution

The - n test requires that the string be quoted within the test brackets. Using an unquoted
string with ! -z, or even just the unquoted string alone within test brackets (see Example 7.6,
“Testing whether a string is null”) normally works, however, this is an unsafe practice.
Always quote a tested string. °

Example 7.5. Arithmetic and string comparisons

#!/ bi n/ bash

Here "a" and "b" can be treated either as integers or strings.
There is sonme blurring between the arithnetic and string conparisons,
#+ since Bash variables are not strongly typed.

Bash pernits integer operations and conpari sons on vari abl es
#+ whose val ue consists of all-integer characters.
Caution advised, however.

echo

if ["$a" -ne "$b"]

t hen
echo "$a is not equal to $b"
echo "(arithnetic conparison)"

f
echo
i f [n $all ' — n $bll]
t hen
echo "$a is not equal to $b."
echo "(string conmparison)"
ngn 1= g
ASCI1 52 I'= ASCI| 53
f
In this particular instance, both "-ne" and "!=" work.
SAsSC. points out, in a compound test, even quoting the string variable might not suffice. [-n "$string" -o "$a" = "$b"] may

cause an error with some versions of Bash if $st ri ng is empty. The safe way is to append an extra character to possibly empty variables, [" x
$string" !'= x -0 "x$a" = "x$b"] (the“x's’ cancel out).

57

Tests

echo

exit O

Example 7.6. Testing whether a stringisnull
#1/ bi n/ bash

str-test.sh: Testing null strings and unquoted strings,
#+ but not strings and sealing wax, not to mention cabbages and kings .

Using if [...]
If a string has not been initialized, it has no defined val ue.
This state is called "null" (not the sanme as zero!).
if [-n $stringl] # stringl has not been declared or initialized.
t hen

echo "String \"stringl\" is not null."
el se

echo "String \"stringl\" is null."
fi # Wong result.
Shows $stringl as not null, although it was not initialized.
echo

Let's try it again.

if [-n "$stringl"] # This tine, $stringl is quoted

t hen
echo "String \"stringl\" is not null."
el se
echo "String \"stringl\" is null."
fi # Quote strings within test brackets!
echo
if [$stringl] # This time, $stringl stands naked
t hen
echo "String \"stringl\" is not null."
el se

echo "String \"stringl\" is null."

fi # This works fine.

The [...] test operator alone detects whether the string is null.

However it is good practice to quote it (if ["$stringl"]).

#

As St ephane Chazel as points out,

if [$stringl] has one argunent, "]"

if ["$stringl”"] has two argunents, the empty "$stringl" and "]"
echo

58

Tests

stringl=initialized

if [$stringl] # Again, $stringl stands unquoted
t hen
echo "String \"stringl\" is not null."
el se
echo "String \"stringl\" is null."
fi # Again, gives correct result.
Still, it is better to quote it ("$stringl"), because

stringl="a = b

if [$stringl] # Again, $stringl stands unquoted
t hen
echo "String \"stringl\" is not null."
el se
echo "String \"stringl\" is null."
fi # Not quoting "$stringl" now gives wong result!

exit 0 # Thank you, also, Florian Wsser, for the "heads-up".

Example 7.7. zmore

#!/ bi n/ bash
znore

View gzipped files with 'nmore' filter

E_NOARGS=85
E_NOTFOUND=86
E_NOT&ZI P=87

if [$# -eq 0] # sane effect as: if [-z "$1"]
$1 can exist, but be enpty: znmore "" arg2 arg3
t hen
echo "Usage: "“basename $0° fil ename" >&2
Error nessage to stderr.
exit $E_NOARGS
Returns 85 as exit status of script (error code).
f

fil enanme=%$1

if [! -f "$filename"] # Quoting $filename allows for possible spaces.
t hen

echo "File $filename not found!" >&2 # Error nessage to stderr

exit $E_NOTFOUND
f

if [${filename#t#*.} = "gz"]
Using bracket in variable substitution.
t hen

echo "File $1 is not a gzipped file!"

59

Tests

exit $E_NOTGZI P
fi

zcat $1 | nore

Uses the "nore' filter.
May substitute 'less' if desired.

exit $? # Script returns exit status of pipe.
Actually "exit $?" is unnecessary, as the script will, in any case,
#+ return the exit status of the |ast conmand execut ed.

compound comparison
-a logica and

expl -a exp2 returnstrueif both expl and exp2 are true.
-0 logical or

expl -o exp2returnstrueif either expl or exp2 istrue.
These are similar to the Bash comparison operators & & and ||, used within double brackets.
[[conditionl & condition2]]
The -0 and -a operators work with the test command or occur within single test brackets.
if ["$exprl" -a "$expr2"]
t hen

echo "Both exprl and expr2 are true."

el se

echo "Either exprl or expr2 is false."
fi

Caution

But, asrihad points out:

[1 -eqg 1] & [-n "“echo true 1>&2™ "] # true
[1 -eg 2] & [-n "“echo true 1>&2™ "] # (no output)
AANAAN Eglse condition. So far, everything as expected.

However
[1 -eq 2 -a-n ""echo true 1>&2™ "] # true
NNNAAAAN Fal se condition. So, why "true" output?

1s it because both condition clauses within brackets eval uate?
[[1 -eq 2 & -n "“echo true 1>&2™"]] # (no output)
No, that's not it.

Apparently && and || "short-circuit" while -a and -o do not.

Refer to Example 8.3, “Compound Condition Tests Using & & and ||, Example 27.17, “ Simulating a two-
dimensiona array, then tilting it”, and Example A.29, “Spammer Hunt” to see compound comparison
operatorsin action.

60

Tests

Nested i f/ t hen Condition Tests

Condition tests using thei f / t hen construct may be nested. The net result is equivalent to using the & &
compound comparison operator.

a=3

if ["$a" -gt 0]

t hen
if ["$a" -1t 5]
t hen
echo "The value of \"a\" |ies sonewhere between 0 and 5."

fi
fi

Same result as:

if ["$a" -gt 0] & ["$a" -1t 5]
t hen

echo "The value of \"a\" |ies sonewhere between 0 and 5."
fi

Example 37.4, “Using arrays and other miscellaneous trickery to deal four random hands from a deck of
cards’ and Example 17.11, “Backlight: changes the brightness of the (laptop) screen backlight” demon-
strate nested i f / t hen condition tests.

Testing Your Knowledge of Tests

The systemwidexi ni t r ¢ file can be used to launch the X server. Thisfile contains quite anumber of if/
thentests. Thefollowing isexcerpted froman“ancient” versionof xi ni t r ¢ (RedHat 7.1, or thereabouts).

if [-f $HOVE . Xclients]; then
exec $HOVE/ . Xclients
elif [-f /etc/X11/xinit/Xclients]; then
exec /etc/ X11l/xinit/ Xclients
el se
failsafe settings. Although we should never get here
(we provide fallbacks in Xclients as well) it can't hurt.
xcl ock -geonetry 100x100-5+5 &
xterm -geonetry 80x50-50+150 &
if [-f /usr/bin/netscape -a -f /usr/share/doc/HTM./index.htm]; then
net scape /usr/share/ doc/ HTM./ i ndex. htm &
fi
fi

Explain the test constructs in the above snippet, then examine an updated version of the file, / et c/
X11/ xi ni t/ xi ni trc,and analyzetheif/then test constructs there. Y ou may need to refer ahead to the
discussions of grep, sed, and regular expressions.

61

Chapter 8. Operations and Related
Topics

Operators

assignment

vari abl e assi gnment Initializing or changing the value of avariable

arithmetic operators

+

Note

Integer variables in older versions of Bash were signed long (32-bit) integers, in the range of
-2147483648 to 2147483647. An operation that took a variable outside these limits gave an er-
roneous result.

echo $BASH VERSION # 1.14

a=2147483646

echo "a = $a" # a = 2147483646
let "a+=1" # Increment "a"
echo "a = $a" # a = 2147483647
et "a+=1" # increnment "a" again, past the limt.
echo "a = $a" # a = -2147483648
ERROR: out of range,
#H+ and—theteftrost—bi-t—the-sign—bit;
+ 6Ras been set, nmaking the result negative.

As of version >= 2.05b, Bash supports 64-bit integers.

Operations and Related Topics

a=1l.5

let "b = $%a + 1.3" # Error

t2.sh: let: b =1.5+ 1.3: syntax error in expression
(error token is ".5 + 1.3")
echo "b = $b" # b=1

Use bc in scripts that need floating point calculations or math library functions.

bitwise operators. The bitwise operators seldom make an appearance in shell scripts. Their chief use
seems to be manipulating and testing values read from ports or sockets. “Bit flipping” is more relevant to
compiled languages, such as C and C++, which provide direct access to system hardware. However, see
vladZ's ingenious use of bitwise operatorsin his base64.sh (Example A.54, “Base64 encoding/decoding”)
script.

bitwise operators
<<

<<=

>>

>>=

logical (boolean) operators

!
&&
|

miscellaneous oper ator s

Numerical Constants

A shell script interprets a number as decimal (ase 10), unlessthat number has a special prefix or notation.
A number preceded by a0 isoct al (base 8). A number preceded by Ox ishexadeci nal (base16). A
number with an embedded # eval uates as BASE#NUMBER (with range and notational restrictions).

Operations and Related Topics

Cctal: nunbers preceded by '0' (zero)
et "oct = 032"

echo "octal nunber = $oct"” # 26
Expresses result in decinal
Hoomm oo oo e eeee---

Hexadeci mal : nunbers preceded by 'Ox' or '0X
et "hex = 0x32"

echo "hexadeci mal nunmber = $hex" # 50
echo $((0x9abc)) # 39612
AN AN doubl e- parent heses arithnmeti c expansi on/ eval uati on

Expresses result in decinal

Ot her bases: BASE#NUMBER
BASE between 2 and 64.
NUMBER must use synbols within the BASE range, see bel ow

let "bin = 2#111100111001101"
echo "binary nunber = $hin" # 31181

|l et "b32 = 32#77"
echo "base-32 nunber = $b32" # 231

let "b64 = 64#@"

echo "base-64 nunber = $b64" # 4031

This notation only works for a limted range (2 - 64) of ASCI| characters.
10 digits + 26 | owercase characters + 26 uppercase characters + @+ _

echo

echo $((36#zz)) $((2#10101010)) $((16#AF16)) $((53#1ah))
1295 170 44822 3375

| nportant note:

=

Using a digit out of range of the specified base notation
#+ gives an error mnessage.

l et "bad _oct = 081"

(Partial) error nessage output:

bad_oct = 081: value too great for base (error token is "081")
Cctal nunbers use only digits in the range 0 - 7

exit $? # Exit value = 1 (error)

Operations and Related Topics

Thanks, Rich Bartell and Stephane Chazelas, for clarification

The Double-Parentheses Construct

Similar to the let command, the ((...)) construct permits arithmetic expansion and evaluation. In its sm-
plest form,a=$((5 + 3)) wouldsetato5 + 3, or 8. However, this double-parentheses construct
isalso amechanism for allowing C-style manipulation of variablesin Bash, for example, ((var ++)).

Example 8.5. C-style manipulation of variables

#1/ bi n/ bash
c-vars.sh
Mani pul ating a variable, Cstyle, using the ((...)) construct.

echo

((a=23)) # Setting a value, Cstyle,
#+ with spaces on both sides of the "=".

echo "a (initial value) = $a" # 23

((at++)) # Post-increnent 'a', Cstyle
echo "a (after a++) = $a" # 24

((a--)) # Post-decrenent 'a', C-style
echo "a (after a--) = $a" # 23

((++a)) # Pre-increnment 'a', Cstyle.
echo "a (after ++a) = $a" # 24

((--a)) # Pre-decrenment 'a', Cstyle.
echo "a (after --a) = $a" # 23

echo

HERHHHHH TR H T H T H R H R
Note that, as in C, pre- and post-decrenent operators
#+ have different side-effects.

n=1; let --n & echo "True" || echo "False" # False
n=1; let n-- && echo "True" || echo "False" # True

Thanks, Jeroen Domburg.
HERHHHHH TR H T H T H R H R

echo

((t = a<45?7:11)) # C-style trinary operator

N NN

65

Operations and Related Topics

echo "If a <45, thent =7, elset =11." # a = 23
echo "t = $t " #t =7
echo

H oo aaooo

Easter Egg alert!

H oo aaooo

Chet Raney seens to have snuck a bunch of undocunented C-style
#+ constructs into Bash (actually adapted from ksh, pretty mnuch).
1In the Bash docs, Ranmey calls ((...)) shell arithnetic,

#+ but it goes far beyond that.

Sorry, Chet, the secret is out.

See also "for" and "while" loops using the ((...)) construct.
These work only with version 2.04 or |ater of Bash.
exit

See also Example 11.13, “A C-style for loop” and Example 8.4, “ Representation of numerical constants’.

Operator Precedence

In a script, operations execute in order of precedence: the higher precedence operations execute before
the lower precedence ones. 3

Table8.1. Operator Precedence

Operator Meaning Comments
HIGHEST PRECEDENCE
var ++ var - - post-increment, post-decrement | C-style operators
++var --var pre-increment, pre-decrement
I~ negation logical / bitwise, inverts sense of

following operator

** exponentiation arithmetic operation
* | % multiplication, division, modulo |arithmetic operation
+ - addition, subtraction arithmetic operation
<< >> left, right shift bitwise

-z -n unary comparison string is/is-not null

3Precedence, in this context, has approximately the same meaning as priority

66

Operations and Related Topics

Operator Meaning Comments

-e -f -t -x, etc. unary comparison file-test

< -t > -gt <= -le >=|compound comparison string and integer

- ge

-nt -ot -ef compound comparison file-test

== -eq != -ne equality / inequality test operators, string and integer

& AND bitwise

A XOR exclusive OR, bitwise

| OR bitwise

&& -a AND logical, compound comparison

|| -0 OR logical, compound comparison

?: trinary operator C-style

= assignment (do not confuse with equality test)

*= [= Y% += -= <<= >>=|combination assignment times-equal, divide-equal, mod-

&= equal, etc.

. comma links a sequence of operations
LOWEST PRECEDENCE

In practice, all you really need to remember is the following:

* The"“My Dear Aunt Sally” mantra(multiply, divide, add, subtract) for thefamiliar arithmetic operations.
» The compound logical operators, & &, ||, -a, and -0 have low precedence.

e Theorder of evaluation of equal-precedence operatorsis usually |eft-to-right.

Now, let's utilize our knowledge of operator precedence to analyze a couple of lines from the / et ¢/
init.d/ functions file,asfoundintheFedora CoreLinux distro.

while [-n "$remmining" -a "$retry” -gt 0]; do
This | ooks rather daunting at first gl ance.

Separate the conditions:

while [-n "$remmining" -a "$retry” -gt 0]; do
--condition 1-- ~™ --condition 2-

|f variable "$remaining"” is not zero |length

#+ AND (- a)
#+ variable "$retry" is greater-than zero
#+ then

#+ the [expresion-w thin-condition-brackets] returns success (0)
#+ and the whil e-1oop executes an iteration.

67

Operations and Related Topics

Evaluate "condition 1" and "condition 2" ***pefore***

#+ ANDi ng them Why? Because the AND (-a) has a | ower precedence
#+ than the -n and -gt operators,

#+ and therefore gets eval uated *| ast*.

HERHHHHH T H T H R H R R
if [-f /etc/sysconfig/il8n -a -z "${NOLOCALE: -}"] ; then

Again, separate the conditions:

if [-f /etc/sysconfig/il8n -a -z "${NOLOCALE: -}"] ; then

--condition 1--------- AN --condition 2-----

If file "/etc/sysconfig/il8n" exists

#+ AND (- a)
#+ vari abl e $NOLCCALE is zero | ength
#+ then

#+ the [test-expresion-w thin-condition-brackets | returns success (0)
#+ and the conmands fol |l ow ng execute.

#

As before, the AND (-a) gets evaluated *last*

#+ because it has the | owest precedence of the operators within

#+ the test brackets.

Not e:

${NOLOCALE: -} is a paraneter expansion that seens redundant.

But, if $NOLOCALE has not been declared, it gets set to *null*,
+ in effect declaring it.

This makes a difference in sone contexts.

Tip

#
#
#
#
#
#

To avoid confusion or error in a complex sequence of test operators, break up the sequence into
bracketed sections.

if ["$vl" -gt "$v2" -0 "$v1" -1t "$v2" -a -e "S$filenane"]
Uncl ear what's going on here...

if [["$v1" -gt "$v2" 11 || [["$vi" -1t "$v2" 1] && [[-e "$filenane"]]

Much better -- the condition tests are grouped in |ogical sections.

68

Part Part 3. Beyond the Basics

Table of Contents

9. Another LOOK @t VariableScoouuuiiiiii e e 71
INterNal VariableSoouuiiiii e 71
Typing variables: declare oF tYPESEL ... 72

ANONEr USE fOr AECIAIE ... i 74
SRANDOM: generate random IMEEgENc.uuuuuniieeeiieiiiiia e e e e e eeettti e e e e e e eesbara e e e eaaaeeees 75

10. Manipulating VariablEsuuiiiiiiee et 89

MaNIPUIBEING SEFNGS .. eeetie ettt ettt et e e et e et et e e e eni e ennens 89
Manipulating StringS USING @WKcoouuiiiiiiici e 98
FUIhEr REFEIENCEe et eees 99

Parameter SUDSHITULIONuuiiiiit e et e e e e e et e eeerb e e 99

11. LOOPS 8N BraNCESeuiiiiii et 111
[0 o S TP PTUPP 111
NS s o o] L ST SOPPTTRSOPPTTR 111
LOOP CONIOL ..ttt ettt ettt e e e e et a e e e b eeeaa s 112
Testing and BranChingoeieiiieii e 112

12. Command SUDSHTULTIONovieeieiiii et e et e e 113

13, ArthMELIC EXPANSIONeeeitieiiiii ettt et ettt e et e e e e e e an e eneas 120

T4, RECESS TIIMIE L.ttt ettt ettt e e ettt e e et b e ettt e e e e e e e e aaa s 121

70

Chapter 9. Another Look at Variables

Used properly, variables can add power and flexibility to scripts. This requires learning their subtleties
and nuances.

Internal Variables

Builtin variabl es: variablesaffecting bash script behavior
$BASH
$BASH_ENV
$BASH_SUBSHELL
$BASHPI D
$BASH_VERSI NF(n]
$BASH_VERSI ON
$CDPATH

$DI RSTACK

$EDI TOR

$EUI D
$FUNCNANVE
$GLOBI GNORE
$CGROUPS

$HOME
$HOSTNAME
$HOSTTYPE

$I FS

$1 GNOREEOF
$LC_COLLATE
$LC_CTYPE

$LI NENO
$SMACHTYPE

$OLDPVD

COCTVPE
PO T

71
$PATH

$PI PESTATUS

Another Look at Variables

Other Special Parameters

Typing variables: declare or typeset

The declare or typeset builtins, which are exact synonyms, permit modifying the properties of variables.
Thisisavery weak form of thetyping 6 availablein certain programming languages. The declare command
is specific to version 2 or later of Bash. The typeset command also works in ksh scripts.

declar e/typeset options
-rreadonly (decl are -r var 1l worksthesameasreadonly var 1)

Thisistherough equivalent of the C const type qualifier. An attempt to change
the value of areadonly variable fails with an error message.

declare -r varl=1

echo "varl = $var1" #varl =1
((varl++)) # x.sh: line 4: varl: readonly variable
-ii nt eger decl are -i nunber

The script will treat subsequent occurrences of "nunber" as an

nunber =3
echo "Nunber = $nunber" # Nunmber = 3

nunber =t hr ee
echo "Number = $nunber” # Nunber = 0
Tries to evaluate the string "three" as an integer.

Certain arithmetic operations are permitted for declared integer variables with-
out the need for expr or let.

n=6/3

echo "n = $n" #n =6/3

811 this context, typing avariable meansto classify it and restrict its properties. For example, avariable declared or typed as an integer is no longer
available for string operations. declare -i n

declare -i intvar n=6/3
echo "n = $n" #n

1
N

i ntvar=23

echo "$intvar" # 23
i ntvar=stringval

echo "$intvar" #0

72

Another Look at Variables

-aarray declare -a indices
Thevariablei ndi ces will betreated as an array.
-ffunction(s) declare -f

A decl are -f linewith no argumentsin a script causes a listing of al the
functions previously defined in that script.

declare -f function_nane
Adeclare -f function_namne inascriptlistsjust the function named.
-X export declare -x var3

This declares a variable as available for exporting outside the environment of
the script itself.

-X var=$vaue decl are -x var3=373

The declar e command permits assigning avalue to avariablein the same state-
ment as setting its properties.

Example 9.10. Using declareto type variables

#! / bi n/ bash
funcl ()
{
echo This is a function
}
declare -f # Lists the function above.
echo
declare -i varl # varl is an integer
var 1=2367
echo "varl decl ared as $var1l"
var 1=var 1+1 # Integer declaration elimnates the need for 'let'.

echo "varl incremented by 1 is $varl."
Attenpt to change variabl e declared as integer.
echo "Attenpting to change varl to floating point value, 2367.1."

var 1=2367. 1 # Results in error nessage, with no change to vari abl e.
echo "varl is still $varl”

echo

declare -r var2=13. 36 # 'declare' pernmits setting a variable property

#+ and sinmul taneously assigning it a val ue.
echo "var2 declared as $var2" # Attenpt to change readonly variable.
var 2=13. 37 # Cenerates error nessage, and exit fromscript.

echo "var2 is still $var2" # This line will not execute.

73

Another Look at Variables

exit O # Script will not exit here.

Caution

Using the declare builtin restricts the scope of avariable.

foo ()

{

FOO="bar"

}

bar ()

{

foo

echo $FQO

}

bar # Prints bar.
However . ..

foo (){

decl are FOO="bar"
}

bar ()

{

foo

echo $FQO

}

bar # Prints nothing.

Thank you, M chael latrou, for pointing this out.

Another use for declare

The declare command can be helpful in identifying variables, environmental or otherwise. This can be
especialy useful with arrays.

bash$ declare | grep HOME
HOVE=/ hone/ bozo

bash$ zzy=68
bash$ declare | grep zzy
zzy=68

bash$ Col ors=([0] ="purple" [1] ="reddi sh-orange" [2]="1ight green")
bash$ echo ${Colors[@}

purpl e reddi sh-orange |ight green

bash$ declare | grep Colors

74

Another Look at Variables

Col ors=([0] ="purple" [1] ="reddi sh-orange” [2]="1ight green")

$RANDOM: generate random integer

Anyone who attempts to generate random numbers by deterministic meansis, of course, living in a state
of sin.

--John von Neumann

$RANDOMis an internal Bash function (not a constant) that returns a pseudorandom i nteger in the range
0- 32767. It should not be used to generate an encryption key.

Example 9.11. Generating random numbers
#1/ bi n/ bash

$RANDOM returns a different randominteger at each invocation.
Nom nal range: 0 - 32767 (signed 16-bit integer).

MAXCOUNT=10

count =1

echo

echo "$MAXCOUNT random numbers: "

echo "---------c--- "

while ["$count” -le $SMAXCOUNT] # Cenerate 10 ($MAXCOUNT) random i ntegers.
do

nurmber =$RANDOM

echo $nunber

let "count += 1" # Increnent count.
done
echo "---------c--- "

If you need a randomint within a certain range, use the 'nodul o' operator.

This returns the remainder of a division operation.
RANGE=500
echo

nunber =$RANDOM
| et "nunber % $RANGE"

NN
echo "Random nunber |ess than $RANGE --- $nunber"
echo

True “randomness,” insofar asit exists at all, can only be found in certain incompletely understood natural phenomena, such as radioactive decay.
Computers only simulate randomness, and computer-generated sequences of “random” numbers are therefore referred to as pseudorandom.

75

Another Look at Variables

|1f you need a randominteger greater than a | ower bound,
#+ then set up a test to discard all nunbers bel ow that.

FLOOR=200

nunber =0 #initialize
while ["$nunber" -le $FLOOR]
do
nunber =$RANDOM
done
echo "Random nunber greater than $FLOOR --- $nunber”
echo

Let's examine a sinple alternative to the above | oop, nanely
l et "nunber = $RANDOM + $FLOOR'
That would elinmnate the while-loop and run faster

#
#
#
But, there mght be a problemwth that. Wiat is it?

Combi ne above two techniques to retrieve random nunber between two limts.
number =0 #initialize
while ["$nunber" -le $FLOOR]
do
nunber =$RANDOM
| et "nunber % $RANGE" # Scal es $nunber down within $RANGE
done
echo "Random nunber between $FLOOR and $RANGE --- S$nunber”
echo

Cenerate binary choice, that is, "true" or "false" val ue.
Bl NARY=2

T=1

nunber =$RANDOM

l et "nunber % $BI NARY"

Note that | et "nunber >>= 14" gives a better randomdi stribution
#+ (right shifts out everything except last binary digit).

if ["$nunber" -eq $T]

t hen

echo " TRUE"
el se

echo "FALSE"
f
echo

CGenerate a toss of the dice.
SPOTS=6 # Modul o 6 gives range 0 - 5.
Incrementing by 1 gives desired range of 1 - 6.

76

Another Look at Variables

Thanks, Paul o Marcel Coel ho Aragao, for the sinmplification
di el=0
di e2=0
Wuld it be better to just set SPOIS=7 and not add 1? Why or why not?

Tosses each die separately, and so gives correct odds.
let "diel = $RANDOM % $SPOTS +1" # Roll first one.
let "die2 = $RANDOM % $SPOTS +1" # Roll second one

VWhich arithmetic operation, above, has greater precedence --
#+ nodulo (% or addition (+)?

et "throw = $diel + $die2"
echo "Throw of the dice = $throw'
echo

exit O

Example 9.12. Picking a random card from a deck

#1/ bi n/ bash
pick-card. sh

This is an exanpl e of choosing random el ements of an array.

Pick a card, any card

Sui t es="Cl ubs
Di anonds
Hearts
Spades”

Denom nati ons="2

©oo~NOOLh~W

10
Jack
Queen
Ki ng
Ace"

Note variables spread over nultiple lines.

sui te=($Sui t es) # Read into array vari abl e.
denomi nat i on=($Denoni nat i ons)

77

Another Look at Variables

num sui tes=${#suite[*]} # Count how nany el enents.
num denomni nat i ons=${ #denoni nati on[*]}

echo -n "${denon nati on[$((RANDOWHuUm denoni nations))]} of "
echo ${suite[$((RANDOWHuUmM suites))]}

$bozo sh pick-cards. sh
Jack of C ubs

Thank you, "jipe," for pointing out this use of $RANDOM
exit O

Example 9.13. Brownian Motion Simulation

#!/ bi n/ bash

browni an. sh

Aut hor: Mendel Cooper
Rel date: 10/ 26/07

License: GPL3

This script nmodels Browni an notion

#+ the random wanderings of tiny particles in a fluid,

#+ as they are buffeted by random currents and col | i sions.
#+ This is colloquially known as the "Drunkard' s Wal k."

1t can also be considered as a stripped-down sinulation of a
#+ Galton Board, a slanted board with a pattern of pegs,

#+ down which rolls a succession of narbles, one at a tine.

#+ At the bottomis a row of slots or catch basins in which

#+ the marbles come to rest at the end of their journey.

Think of it as a kind of bare-bones Pachi nko gane.

As you see by running the script,

#+ nost of the marbles cluster around the center slot.

#+ This is consistent with the expected binomal distribution

As a Galton Board sinmulation, the script

#+ di sregards such paraneters as

#+ board tilt-angle, rolling friction of the marbles,

#+ angl es of inpact, and elasticity of the pegs.

To what extent does this affect the accuracy of the sinulation?

PASSES=500 # Nunber of particle interactions / marbles.

RONG=10 # Nunber of "collisions" (or horiz. peg rows).

RANGE=3 # 0 - 2 output range from $RANDOM

POS=0 # Left/right position

RANDOMESS # Seeds the random number generator fromPID
#+ of script.

78

Another Look at Variables

declare -a Slots # Array holding cunul ative results of passes.
NUMSLOTS=21 # Nunber of slots at bottom of board.

Initialize Slots () { # Zero out all elements of the array.
for i in $(seq $NUMSLOTS)
do
Slots[$i]=0
done

echo # Blank |ine at beginning of run

}

Show _Slots () {
echo; echo
echo -n " "
for i in $(seq $NUMSLOTS) # Pretty-print array el ements.
do

printf "o8dd" ${Slots[$i]} # Allot three spaces per result.
done

echo # Row of slots:
echo " | __| | ||| J 1| JJ | J_J [|__|__["
echo " []"
echo # Note that if the count within any particular slot exceeds 99,
#+ it messes up the display.
Running only(!) 500 passes usually avoids this.

}
Move () { # Move one unit right / left, or stay put.
Move=$RANDOM # How randomis $RANDOW? Well, let's see ..

et "Move % RANGE" # Normalize into range of 0 - 2.
case "$Move" in

0) ;; # Do nothing, i.e., stay in place.
1) ((PCs--));; # Left.
2) ((POS++)):; # Right.
*) echo -n "Error ";; # Anomal y! (Shoul d never occur.)
esac
}
Play () { # Single pass (inner |oop).
i =0
while ["$i" -1t "SRONE"] # One event per row
do
Move
((i++));
done
SH FT=11 Wiy 11, and not 10?

et "POS += $SHI FT"
((Slots[$POS] ++))

Shift "zero position" to center
DEBUG echo $PCS

H*H H H*

79

Another Look at Variables

echo -n "$PCS "

}

Run () { # Quter |oop.
p=0
while ["$p" -1t "S$PASSES"]
do
Pl ay
(C pt+))
PGCS=0 # Reset to zero. Wy?
done

main ()
Initialize Slots
Run

Show Sl ot s

exit $?

[Exerci ses:

H o o-m e e e a - - -

1) Show the results in a vertical bar graph, or as an alternative,
#+ a scattergram

2) Alter the script to use /dev/urandominstead of $RANDOM

WIl this make the results nore randon?

3) Provide sone sort of "animation" or graphic output

for each marbl e pl ayed.

Jipe points out a set of techniques for generating random numbers within arange.

GCenerate random nunber between 6 and 30.
r nunber =$((RANDOW25+6))

GCenerate random nunber in the same 6 - 30 range,
#+ but the nunber nust be evenly divisible by 3.
r nunmber =$(((RANDOW/B0/ 3+1) *3))

Note that this will not work all the tinme.
It fails if $RANDOWBO returns O.

Frank Wang suggests the follow ng alternative:
rnunmber =$((RANDOWR7/ 3*3+6))

Bill Gradwohl came up with an improved formulathat works for positive numbers.
r nunmber =$(((RANDOWA max- mi n+di vi si bl eBy))/ di vi si bl eBy*di vi si bl eBy+ni n))

Here Bill presents a versatile function that returns arandom number between two specified values.

80

Another Look at Variables

Example 9.14. Random between values

#1/ bi n/ bash
random bet ween. sh
Random nunber between two specified val ues.
Script by Bill Gadwohl, with mnor nodifications by the docunent author
Corrections in lines 187 and 189 by Anthony Le C ezio.
Used with perm ssion.
randonBet ween() {
GCenerates a positive or negative random nunber
#+ between $mn and $max
#+ and divi si bl e by $divisi bl eBy.
Gves a "reasonably random distribution of return val ues.
#
Bill Gadwhl - Cct 1, 2003

syntax() {

Function enbedded within function
echo
echo "Syntax: randonmBetween [min] [max] [nultiple]”
echo
echo -n "Expects up to 3 passed paraneters, "
echo "but all are conpletely optional."”
echo "mnis the mninmmval ue"
echo "max is the maxi mum val ue"
echo -n "nmultiple specifies that the answer nust be "
echo "a multiple of this value.™
echo " i.e. answer nust be evenly divisible by this nunber.™
echo
echo "If any value is mssing, defaults area supplied as: 0 32767 1"
echo -n "Successful conpletion returns 0, "
echo "unsuccessful conpletion returns”
echo "function syntax and 1."
echo -n "The answer is returned in the global variable "
echo "randonBet weenAnswer "
echo -n "Negative values for any passed paraneter are "
echo "handl ed correctly."

}

l ocal m n=${1:-0}

l ocal nmax=${2:-32767}

| ocal divisibleBy=${3:-1}

Default val ues assigned, in case paraneters not passed to function

| ocal x
| ocal spread

Let's nmake sure the divisibleBy value is positive.
[${divisibleBy} -1t 0] && divisibleBy=$((0-divisibleBy))

Sanity check.
if [$# -gt 3 -0 ${divisibleBy} -eq 0 -0 ${nmin} -eq ${max}]; then

81

Another Look at Variables

f

synt ax
return 1

See if the mn and max are reversed.

i f

f

#+
i f

f

#+
i f

f

#+
#+

#+

#+
#+
#+

[${mn} -gt ${max}]; then
Swap them

x=%{ m n}

m n=${ max}

max=${ x}

If mnis itself not evenly divisible by $divisibl eBy,
then fix the min to be within range
[$((m n/divisibleBy*divisibleBy)) -ne ${nmin}]; then
if [${mn} -1t 01]; then

m n=$((m n/ di vi si bl eBy*di vi si bl eBy))
el se

m n=$((((m n/ di vi si bl eBy) +1) *di vi si bl eBy))
f

If max is itself not evenly divisible by $divisibl eBy,
then fix the max to be within range
[$((max/divisibleBy*divisibleBy)) -ne ${max}]; then
if [${mex} -1t 0]; then

max=$((((max/ di vi si bl eBy) - 1) *di vi si bl eBy))
el se

max=$((max/ di vi si bl eBy*di vi si bl eBy))
f

Now, to do the real work

Note that to get a proper distribution for the end points,
the range of random val ues has to be allowed to go between
0 and abs(max-m n) +di vi si bl eBy, not just abs(max-mn)+1

The slight increase will produce the proper distribution for the
end points.

Changing the forrmula to use abs(max-mn)+1 will still produce
correct answers, but the randommess of those answers is faulty in
that the nunber of tines the end points ($m n and $max) are returned
is considerably | ower than when the correct formula is used.

spread=$((max-mn))

#
#+

Omair Eshkenazi points out that this test is unnecessary,
since max and m n have al ready been swi tched around.

[${spread} -It 0] && spread=$((0-spread))
| et spread+=divi si bl eBy
randonBet weenAnswer =$(((RANDOW/spr ead) / di vi si bl eBy*di vi si bl eBy+mi n))

82

Another Look at Variables

return O

However, Paul o Marcel Coel ho Aragao points out that

#+ when $max and $min are not divisible by $divisibl eBy,

#+ the formula fails.

#

He suggests instead the follow ng formul a:

rnunber = $(((RANDOMA mex- mi n+1) +mi n)/ di vi si bl eBy*di vi si bl eBy))

}

Let's test the function.
m n=-14

max=20

di vi si bl eBy=3

GCenerate an array of expected answers and check to make sure we get
#+ at | east one of each answer if we [oop | ong enough

decl are -a answer
m ni nune${ m n}
mexi mune${ max}
if [$((m ni mum divi si bl eBy*di visibleBy)) -ne ${mnimun}]; then
if [${mninmun} -1t 0]; then
m ni mume$((m ni nund di vi si bl eBy*di vi si bl eBy))
el se
m ni mume$((((m ni mund di vi si bl eBy) +1) *di vi si bl eBy))
f
f

|If max is itself not evenly divisible by $divisibleBy,
#+ then fix the max to be within range

if [$((maxi mum divi si bl eBy*di vi si bl eBy)) -ne ${maxi mun}]; then
if [${maximun} -1t 0]; then
maxi mume$((((maxi mund di vi si bl eBy) - 1) *di vi si bl eBy))
el se
maxi mume$((maxi mund di vi si bl eBy*di vi si bl eBy))
f
f

W need to generate only positive array subscripts,
#+ so we need a displacenent that will guarantee
#+ positive results.

di sp=$((0-m ni num))

for ((i=%{m nimun}; i<=${maxinun}; i+=divisibleBy)); do
answer [i +di sp] =0

done

83

Another Look at Variables

Now | oop a | arge nunber of times to see what we get.
| ooplt=1000 # The script author suggests 100000,
#+ but that takes a good | ong while.

for ((i=0; i<${looplt}; ++i)); do

Note that we are specifying min and max in reversed order here to
#+ make the function correct for this case.

randonBet ween ${nax} ${m n} ${di visi bl eBy}

Report an error if an answer is unexpected.

[${randonBet weenAnswer} -1t ${m n} -o ${randonBet weenAnswer} -gt ${max}] \
&% echo M N or MAX error - ${randonBetweenAnswer}!

[$((randonBet weenAnswer %${ di vi si bl eBy})) -ne 0] \

&& echo DI VI SI BLE BY error - ${randonBetweenAnswer}!

Store the answer away statistically.
answer [r andonmBet weenAnswer +di sp] =$((answer [r andonBet weenAnswer +di sp] +1))
done

Let's check the results

for ((i=%{m nimun}; i<=${maxinunt}; i+=divisibleBy)); do
[${answer[i+disp]} -eq 0] \
&& echo "W never got an answer of $i." \
|| echo "${i} occurred ${answer[i+disp]} times."
done

exit O

Just how random is $RANDOM? The best way to test thisisto write a script that tracks the distribution of
“random” numbers generated by $RANDOM Let's roll a $RANDOMdie afew times. . .

Example 9.15. Rolling a single diewith RANDOM

#!/ bi n/ bash

How random i s RANDOW

RANDOMES$ # Reseed the random nunber generator using script process ID
Pl PS=6 # A die has 6 pips.

MAXTHROA5=600 # Increase this if you have nothing better to do with your tine.
t hr ow=0 # Number of tinmes the dice have been cast.

ones=0 # Must initialize counts to zero,

t wos=0 #+ since an uninitialized variable is null, NOT zero

t hrees=0

f our s=0

fives=0

Another Look at Variables

S

pr
{

ec
ec
ec
ec
ec
ec
ec
ec

}
up
{

ca

es

}

ec

wh
do

do

pr

ex

#

#

xes=0

int_result ()

ho

ho "ones = $ones"
ho "twos = $t wos"
ho "t hrees = $t hrees"”
ho "fours = $fours”
ho "fives = $fives"
ho "sixes = $sixes"
ho

dat e_count ()

se "$1" in

0) ((ones++));;
1) ((twos++));;
2) ((threes++));;
3) ((fours++));;
4) ((fives++));;
5) ((sixes++));;
ac

Since a die has no "zero"
And this to 2.
And so forth.

ho

ile ["$throw' -It "$MAXTHROWS']
et "diel = RANDOM % $PI PS"

updat e_count $di el

let "throw += 1"

ne
int_result

it $?

The scores should distribute evenly,
Wth $MAXTHROAS at 600, all should cluster

pl us-or-m nus 20 or so.

Keep in mnd that
and not a spectacul arly good one at that.

Randommess is a deep and conpl ex subject.

this corresponds to 1.

assum ng RANDOM i s random
around 100,

RANDOM i s a ***pseudor andont** gener at or,

Sufficiently |Iong "random sequences may exhi bit

chaotic and ot her "non-randomi behavi or

Exercise (easy):

Rewrite this script to flip a coin 1000 ti mes.

85

Another Look at Variables

Choices are "HEADS' and "TAILS."

As we have seen in the last example, it is best to reseed the RANDOM generator each time it is invoked.
Using the same seed for RANDOMrepeats the same series of numbers. 8 (This mirrors the behavior of the
randon{) functioninC.)

Example 9.16. Reseeding RANDOM

#!/ bi n/ bash
seedi ng-random sh: Seedi ng the RANDOM vari abl e.
v 1.1, reldate 09 Feb 2013

MAXCOUNT=25 # How many nunbers to generate.
SEED=

random numbers ()
| ocal count =0
| ocal numnber

while ["$count” -1t "SMAXCOUNT"]
do

nunber =$RANDOM

echo -n "$nunber "

| et "count ++"
done

}

echo; echo

SEED=1

RANDOM=$SEED # Setting RANDOM seeds the random nunber generator.
echo "Random seed = $SEED"

random nunbers

RANDOM=$SEED # Sanme seed for RANDOM .
echo; echo "Again, with sanme random seed ..."
echo "Random seed = $SEED"

random nunbers # reproduces the exact sane nunber series.

#

When is it useful to duplicate a "randonm' series?

echo; echo

SEED=2

RANDOM=$SEED # Trying again, but with a different seed .
echo "Random seed = $SEED"

random nunbers # . . . gives a different number series.

8The seed of acomputer-generated pseudorandom number series can be considered an identification label. For example, think of the pseudorandom
serieswith aseed of 23 asSeri es #23.

A property of a pseurandom number series is the length of the cycle before it starts repeating itself. A good pseurandom generator will produce
series with very long cycles.

86

Another Look at Variables

echo; echo

RANDOVES seeds RANDOM from process id of script.
1t is also possible to seed RANDOM from 'tine' or 'date' conmmands.

Cetting fancy. ..

SEED=$(head -1 /dev/urandom| od -N 1 | awk '{ print $2 }'| sed s/"0*//)
Pseudo-random out put fetched

#+ from /dev/urandom (syst em pseudo-random devi ce-file),

#+ then converted to line of printable (octal) nunbers by "od",
#+ then "awk" retrieves just one number for SEED

#+ finally "sed" renmpves any | eadi ng zeros.

RANDOMVE$SEED

echo "Random seed = $SEED"

random nunbers

echo; echo

exit O

Note

The / dev/ urandom pseudo-device file provides a method of generating much more
“random” pseudorandom numbers than the $RANDOM variable. dd i f =/ dev/ ur andom
of =targetfile bs=1 count=XX creates afile of well-scattered pseudorandom numbers.
However, assigning these numbersto avariablein ascript requiresaworkaround, such asfiltering
through od (as in above example, Example 16.14, “ Generating 10-digit random numbers’, and
Example A.36, “Insertion sort™), or even piping to md5sum (see Example 36.16, “A “horserace”
game”).

There are also other ways to generate pseudorandom numbers in a script. Awk provides a con-
venient means of doing this.

Example 9.17. Pseudorandom number s, using awk

#1/ bi n/ bash

randon®.sh: Returns a pseudorandom nunber in the rang