
A gentle introduction to TEXplate:
a document structure creation tool

Island of TEX

Version 1.0.6 – August 2, 2024

Abstract

As the title implies, this document
dares to be a gentle introduction to a
rather unusual application, at least
from our ordinary TEX workflow: a
tool for creating document structures
based on templates. The application
name is a word play on TEX and tem-
plate, so the purpose seems quite ob-
vious: we want to provide an easy
and straightforward framework for
reducing the typical code boilerplate
when writing TEX documents. Also
note that one can easily extrapolate
the use beyond articles and theses:
the application is powerful enough
to generate any text-based structure,
given that a corresponding template
exists.

1 Introduction

A typical TEX document usually contains
a common preamble, the same code boil-
erplate we hold dear to keep our writ-
ing workflow efficient and, to an extent,
satisfy our darkest typographic additions.
A coherent preamble might significantly
reduce the odds of having issues when
compiling your document, but at the end
of the day, it is always your fault when

something terribly wrong happens in your
code1. Anyway, consider the following TEX
document2:

\documentclass{article}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}

\begin{document}
This is the law of the jungle:
Nutella pizza is good.
\end{document}

Modulo actual content, this structure
is probably recurring on the majority of
documents using the classical engines. Ul-
timately, we aim at providing a collection
of text-based structures through a com-
prehensive command line interface3, so as
a means to reduce the code boilerplate for
typical documents.

1This statement is suspiciously Carlislean. Also,
since we are on the subject, make sure to never
read documentation, as bad things happen.

2Apologies in advance to every pizza connois-
seur out there (specially Italians) for the provocative
statement in the document. That said, one must
accept the truth that Nutella pizza is good.

3Granted, command line usage is not exactly as
friendly, intuitive and comprehensive as one could
have ever hoped. We have plans for a graphical
interface in the near future, so stay tuned.

1

2 Concepts

Before introducing the command line ap-
plication itself, we need to establish a com-
mon foundation and formally present a
couple of concepts in which our tool is
built. Consider this section as a primer to
such elements.

2.1 Template

A template is basically a textual structure
with certain entry points, in a sort of fill in
the blanks fashion. For TEXplate, we rely
on a template language provided by the
Apache Foundation named VTL (or Veloc-
ity, for short), in its latest 2.0 specification,
as of the writing of this manual.

Disclaimer

We do not intend to cover the language
specification on its full glory in this man-
ual. However, we might pinpoint and
highlight some characteristics whenever
relevant to the context.

For our purposes, the basic structure
of any text-based document constitutes a
template. For instance, the TEX document
originally presented in Section 1, modulo
actual content, can certainly act as a ver-
batim template:

\documentclass{article}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}

\begin{document}

\end{document}

Note, however, that this template, as
it is, does not hold any variables, con-

ditional flows or sophisticated language
constructs. The next concepts will build
upon variables in the text, as a means to
enhance the template expressiveness.

2.2 Map

A map is a collection of variables and val-
ues instantiated at run time and available
within the template context. Since these
values are specified in the command line,
TEXplate initially casts them as strings. It
is worth noting, however, that these string
values can be converted to arbitrary types
later on through special functions named
handlers in the template specification (see
Section 4.3 for further details). Regard-
ing syntax, a variable bar in the command
line is referenced as a variable $bar inside
the template context. Note that all meth-
ods from the corresponding type class are
available in the variable scope, since a
variable acts like a proper Java object.
However, note that it is highly advisable
to verify whether a variable is defined be-
fore invoking any method. For instance,
consider the following excerpt:

#if($name)
Hello, my name is $name.
#else
Hello, my name is John.
#end

In this excerpt, observe that $name is a
variable. If such variable is properly spec-
ified in the command line, it will be set
accordingly in the template context and
the corresponding conditional branch is
handled. Please refer to the VTL specifica-
tion for further details.

2

Disclaimer

Ultimately, Java objects will rely on the
toString() method when the template
is actually rendered, so there is no need
to worry about converting arbitrary val-
ues back to strings.

The map is specified at run time, in the
command line. It is important to observe
that a variable might be marked as manda-
tory by the template (more on that later,
when discussing the template specifica-
tion in Chapter 4), so the absence of such
variable in the map will trigger an excep-
tion and the tool will prematurely end.

3 Command line

Our tool is a typical command line appli-
cation, so we need to invoke it by simply
typing texplate in the terminal:

$ texplate

Provided that TEXplate is properly avail-
able in the underlying operating system,
we will get a lovely, colourful output in our
terminal, along with a couple of scary mes-
sages telling that some required options
are missing. Our tool provides four op-
tions, described as follows. Strictly speak-
ing, there is only one mandatory option.
The remainder might be optional, depend-
ing on certain scenarios.

3.1 Output

Referred as either -o (short representation)
or --output (long representation), this op-
tion holds the output file in which the
chosen template will be effectively written.

The following examples are valid entries to
this option:

-o mydoc.tex
-o=mydoc.tex
--output mydoc.tex
--output=mydoc.tex

The name is arbitrary, so you can use
anything to your heart’s desires. Keep in
mind, however, that an existing file will be
mercilessly overwritten. Also, make sure
the path has the proper permissions for
writing the output file.

3.2 Template

Referred as either -t (short representa-
tion) or --template (long representation),
this option holds the reference to the tem-
plate to be potentially merged with data
and properly generated. The basic syntax
is detailed as follows (note that $article
refers to the template identifier):

-t article
-t=article
--template article
--template=article

The provided string should match the
template identifier (or file name), other-
wise TEXplate will raise an error complain-
ing about the missing reference. The tem-
plate identifier will be discussed later on,
in Section 4.1. For a discussion on file
name lookup, see Section 4.2.

3.3 Map

Referred as either -m (short representation)
or --map (long representation), this option
holds a map entry, defined as a key=value
ordered pair (mind the = symbol used as

3

entry separator). This option can be used
multiple times. The following examples
are valid entries to this option (note that
foo and bar refer to an arbitrary map entry
key and value, respectively):

-m foo=bar
-m=foo=bar
--map foo=bar
--map=foo=bar

The map entry denotes a variable in the
template context, where the key is the vari-
able name and the value is set to be the
initial state of such variable. As the --map
option can be used multiple times, con-
sider the following scenario, where the
map entry key is repeated:

--map foo=1 --map foo=2 --map foo=3

The final value associated to foo is set
to be the rightmost occurrence of the cor-
responding pair in the command line.

3.4 Configuration

TEXplate also offers a configuration file
in which the tool can read template data,
for automation purposes. The configura-
tion file is written in a text-based format
named TOML4 and can hold at most two
sections: the template name as a string
(with the same behaviour of --template
in the command line) and the contextual
data map, with keys and associated val-
ues. A configuration file can have at least
one of such sections, but never be empty.
Consider the following configuration file:

4According to Wikipedia, TOML is a configura-
tion file format intended to be easy to read and
write due to obvious semantics and designed to
map unambiguously to a dictionary. The syntax
consists of entry pairs, sections and comments.

template = "article"

[map]
country = "Germany"
year = 2020
articles = ["Die", "Der", "Das"]

Observe that, contrary to the --map op-
tion in the command line, the [map] sec-
tion in the configuration file accepts val-
ues other than strings (e.g., integers and
lists of strings).

Disclaimer

Please keep in mind that map entries in
the configuration file are not subjected
to handlers (when available), as their
command line counterparts are.

Command line options have priority over
values originated from the configuration
file. Given the previous configuration file,
consider the following scenario:

$ texplate -c config.toml -t book

Even though article was the template
set in the configuration, the --template
option has higher priority and thus the
template is set to book, as it is defined
in the command line. The same logic is
applied to map entries.

Disclaimer

Observe that, if a configuration file is
being used and has no template key,
the --template option automatically be-
comes mandatory.

Note that TEXplate has support for just
one configuration file at run time. Support
for multiple configurations might be added
in the near future.

4

4 Template specification

TEXplate uses predefined templates to gen-
erate text-based structures. Similar to the
configuration structure presented in Sec-
tion 3.4, the tool relies on text-based files
written in TOML for holding the template
specifications.

4.1 Naming scheme

For starters, a template has an identi-
fier, a name that logically represents the
text-based structure to be generated. Ob-
serve that the name corresponds to the
reference used later on in the --template
option in the command line. A template
file name has to match this identifier, so
e.g., the article reference is automati-
cally linked to the article.toml file which
contains the template specification.

Disclaimer

Observe that TEXplate’s lookup system
is case-sensitive, so make sure to al-
ways reference the correct name.

Although there are no hard limitations
on a template name, it is advisable to keep
it short and concise, with no spaces what-
soever5. As a consequence, potential is-
sues with extended characters in the Uni-
code range and command line escaping
are avoided, and thus our beloved tool
might just work as expected.

4.2 Directory lookup

TEXplate employs a lookup system that ba-
sically searches two locations for template

5Another Carlislean statement would remind
us that people who put spaces in their file names
deserve no sympathy. At all.

files (specifications written in the TOML
format), in order of priority:

1. ~/.texplate/templates which refers
to a path structure from the user
home directory.

2. The application’s resources which
refers to a files within the JAR file.
You can use a ZIP viewer to look at
the templates there.

For instance, as a means to illustrate
the concept of directory lookup, consider
the following command line command:

$ texplate -t article -o mydoc.tex

TEXplate will look for a template file
named article.toml in the path structure
from the user home directory, as seen in
#1. If the file is found, the search ends
and the tool proceeds to the template gen-
eration. Otherwise, TEXplate will attempt
to look in its own template folder for a
match. If found, the tool will use this file
reference. If the template file is not found
in any of the two locations, the tool reports
the issue and prematurely ends.

if the argument provided to -template
holds no .toml extension, TEXplate will
handle it as a string and fallback to the
default template lookup, previously de-
scribed. Otherwise, the tool will handle
it as a path reference and read the tem-
plate from it. Consider, for instance, these
scenarios:

--template article

In this scenario, TEXplate searches for
article.toml in the default directories
(home and application, in that order).

5

--template article.toml

In this scenario, TEXplate searches for
article.toml in the working (current) di-
rectory.

--template dir/article.toml

In this scenario, TEXplate searches for
article.toml in the dir/ subdirectory.
Note that absolute and relative paths are
supported.

4.3 Handlers

A map entry, when obtained from the
command line through the --map option,
holds a string value. TEXplate provides
a straightforward way to convert string
values to arbitrary types through special
functions named handlers in the template
specification. The following handlers are
available for type conversion:

• to-csv-list: this handler, as the
name implies, converts a string to a
list of comma-separated values. The
implementation attempts to respect
quoted elements, when available.

• to-boolean: this handler converts a
string to a boolean value, based on the
following patterns: true and false, 1
and 0, and yes or no.

• to-string-list-from-file: this han-
dler, as the name implies, converts
a string into a file reference and at-
tempts to read its contents into a list
of lines. If the file reference does not
exist or is somehow invalid, an empty
list is assigned instead.

When type conversion is needed in the
template logic, handlers are assigned to

map keys in the corresponding specifica-
tion, detailed later on, in Section 4.4.

Disclaimer

Handlers are internal functions pro-
vided by TEXplate that map String val-
ues to arbitrary types.

When referencing handlers, make sure
to write the correct name in the template
specification, so the lookup and subse-
quent call work as expected.

4.4 Template structure

The template structure holds at most two
sections: the template itself and an op-
tional [handlers] section holding the han-
dlers to be applied to certain map entries.
The following keys are required for the first
section (i.e., the template definition):

• name: this key holds a string value
that denotes the template name. Ob-
serve that TEXplate requires this key
to hold the exact value of the template
identifier, as described in Section 4.1.

name = "mytemplate"

• description: this key holds a string
value that provides a short yet mean-
ingful description for the template be-
ing written. It is usually suitable to
use the """ (triple double quotes) no-
tation for this key, as it allows long
strings to span multiple lines (and ig-
nore line breaks).

description = """
A simple template used to
illustrate the template
structure.

6

"""

• authors: this key, as the name im-
plies, holds a list of strings denot-
ing the template authors, for obvious
blaming purposes, in case anything
goes terribly wrong6.

authors = ["Alice", "Bob"]

• requirements: this key holds a list
of strings denoting potential require-
ments for the template. For instance,
the template might require some vari-
ables to be specified at run time, ei-
ther through the command line or con-
figuration file:

requirements = ["names"]

If the requirements are not complied,
TEXplate will report the issue and pre-
maturely end. When the template im-
poses no requirements at all, make
sure to provide an empty list:

requirements = []

• document: this key, as the name sug-
gests, holds the actual text-based doc-
ument, written using the VTL spec-
ification (or any subset of it). It is
usually suitable to use the ’’’ (triple
single quotes) notation for this key,
as it allows raw strings (i.e., literal re-
production with no need of escaping
characters) and multiple lines while
respecting breaks.

6Of course, it is important to observe that an
error, exception or issue is definitely not our fault.

document = ’’’
These are the names:

\begin{itemize}
#foreach ($name in $names)

\item $name
#end
\end{itemize}
’’’

The [handlers] section, as the name in-
dicates, holds potential handler references
to be applied to certain map entries. These
references are set as strings. For instance,
$names is actually a list of strings, so a
type conversion has to be employed:

[handlers]
names = "to-csv-list"

Observe that, if there is no need for han-
dlers in the template structure, this sec-
tion might safely be omitted.

5 A complete example

Now that all concepts are formally intro-
duced in the previous chapters, it is time
to glue everything together. The follow-
ing steps cover the basics from creating a
template to merging data into it:

1. First and foremost, let us create a tem-
plate named mytemplate, inspired on
the previous content presented in this
user manual. The naming scheme, as
well as the directory structure, must
be respected, so open your favourite
editor7 and create the following file:

7Your favourite editor should be vim, of course.
Anything else is simply wrong and unacceptable.

7

$ mkdir -p ~/.texplate/templates/
$ cd ~/.texplate/templates/
$ vim myarticle.toml

2. Now, add the following content to the
newly created mytemplate.toml file:

name = "mytemplate"
description = """
A simple template used to
illustrate the template
structure.
"""
authors = ["Alice", "Bob"]
requirements = ["names"]
document = ’’’
These are the names:

\begin{itemize}
#foreach ($name in $names)
\item $name

#end
\end{itemize}
’’’

[handlers]
names = "to-csv-list"

3. Done, the template is ready to be
used! Now, simply call TEXplate in
the command line and provide the re-
quired map entry, as seen as follows:

$ texplate -t mytemplate -m
names=John,Jane -o list.tex

The output (i.e., the template merged
with the provided data) will be written
to a text-based file named list.tex.

4. When running TEXplate, this is the ex-
pected output to be displayed in the
command line (note that the layout
is slightly modified due to space con-
straints in this user manual):

TeXplate 1.0.4, a document
structure creation tool

Copyright (c) 2020, Island of TeX
All rights reserved.

Configuration file
mode disabled [DONE]
Entering full
command line mode [DONE]

Please, wait...

Obtaining reference ... [DONE]
Composing template [DONE]
Validating data [DONE]
Merging template
and data [DONE]

Done! Enjoy your template!
Written: 78 B

5. Great, everything worked as expected!
Now, let us check the contents of the
newly generated list.tex file:

$ cat list.tex
These are the names:

\begin{itemize}
\item John
\item Jane

\end{itemize}

As seen in the previous output, the
template and provided data were suc-
cessfully merged.

6. Let us reproduce the same output
with a configuration file. Observe,
however, that handlers are not applied
to map entries in the configuration file,
so we have to explicitly set names as a
list of strings. Let us create a config-
uration file named config.toml in the
current directory:

8

$ vim config.toml

Now, add the following content to the
newly created config.toml file:

template = "mytemplate"

[map]
names = ["John", "Jane"]

7. The new call to TEXplate, given the
aforementioned configuration file, is
slightly different than the previous
one (step 3), so write the following en-
try in the command line:

$ texplate -c config.toml -o
list.tex

8. The output is pretty much the same
obtained in the previous call (step 4),
except for the following lines acknowl-
edging the configuration file mode:

Checking
configuration [DONE]
Adjusting variables
from file [DONE]

The final lines from TEXplate indicate
everything worked as expected:

Done! Enjoy your template!
Written: 78 B

9. The generated list.tex file has ex-
actly the same contents as illustrated
in step 5. It is important to remem-
ber that an existing output file will be
mercilessly overwritten.

The previous steps described how
TEXplate works, from creating a template
to merging data into it, as a means to gen-
erating a text-based document. Chapter 6

presents text-based templates shipped
with our tool, as well as the available vari-
ables in the document context.

6 Included templates

TEXplate ships with the following text-
based templates, automatically available
from the application directory:

article

This reference holds a simple template
for the default article class, with sup-
port for new engines (with fontspec fall-
back), babel languages, geometry options,
generic packages, and TikZ and corre-
sponding libraries. There are no require-
ments for this template. Available vari-
ables are described as follows:

• xetex: boolean value, changes the
default behaviour to accommodate
the XeTEX engine. Typical fontenc
and inputenc packages are replaced
by fontspec when this variable holds
true (semantically equivalent).

-m xetex=true

• luatex: boolean value, changes the
default behaviour to accommodate
the LuaTEX engine. Typical fontenc
and inputenc packages are replaced
by fontspec when this variable holds
true (semantically equivalent).

-m luatex=true

• options: string value, holds the docu-
ment class options, when applied.

-m options=12pt,a4paper

9

• babel: string value, holds a sequence
of languages supported by the babel
package. Keep in mind that the last
entry in the sequence is set to be the
default language.

-m babel=english,italian

• geometry: string value, holds the op-
tions for the geometry package. It is
important to note that order matters.

-m geometry=margins=2cm

• packages: list of strings, holds a list of
packages to be included in the docu-
ment preamble, in the specified order.

-m packages=longtable,array

• tikz: boolean value, checks whether
the document should include support
for TikZ in the preamble.

-m tikz=true

• libraries: list of strings, holds a list
of TikZ libraries to be included in the
document preamble, in the specified
order. It is important to observe that
this variable has no effect whatsoever
if the tikz variable is either not set or
does not hold true.

-m libraries=automata,positioning

standalone

This reference holds a simple template for
the standalone class, with support for new
engines (with fontspec fallback), babel
languages, geometry options, generic
packages, and TikZ and corresponding

libraries. There are no requirements for
this template. Available variables are de-
scribed as follows:

• xetex: boolean value, changes the
default behaviour to accommodate
the XeTEX engine. Typical fontenc
and inputenc packages are replaced
by fontspec when this variable holds
true (semantically equivalent).

-m xetex=true

• luatex: boolean value, changes the
default behaviour to accommodate
the LuaTEX engine. Typical fontenc
and inputenc packages are replaced
by fontspec when this variable holds
true (semantically equivalent).

-m luatex=true

• options: string value, holds the docu-
ment class options, when applied.

-m options=12pt,a4paper

• babel: string value, holds a sequence
of languages supported by the babel
package. Keep in mind that the last
entry in the sequence is set to be the
default language.

-m babel=english,italian

• geometry: string value, holds the op-
tions for the geometry package. It is
important to note that order matters.

-m geometry=margins=2cm

• packages: list of strings, holds a list of
packages to be included in the docu-
ment preamble, in the specified order.

10

-m packages=longtable,array

• tikz: boolean value, checks whether
the document should include support
for TikZ in the preamble.

-m tikz=true

• libraries: list of strings, holds a list
of TikZ libraries to be included in the
document preamble, in the specified
order. It is important to observe that
this variable has no effect whatsoever
if the tikz variable is either not set or
does not hold true.

-m libraries=automata,positioning

7 Final remarks

This document aimed at being a gentle in-
troduction to TEXplate, a tool for creating
document structures based on templates.
We invite you to contribute to this project
by submitting feature requests, issues and
new templates:

gitlab.com/islandoftex/texplate

Happy TEXing with TEXplate!

License

TEXplate is licensed under the New BSD
License. Please note that the New BSD
License has been verified as a GPL-
compatible free software license by the
Free Software Foundation, and has been
vetted as an open source license by the
Open Source Initiative.

Changelog

1.0.6 (current)

Fixed

• Application version is now retrieved
from the manifest (regression fix).

1.0.5 (2024-08-01)

Changed

• Updated dependencies to close a se-
curity vulnerability.

1.0.4 (2021-07-27)

Fixed

• Resolve outdated dependency with
vulnerability.

1.0.3 (2020-08-07)

Added

• New to-string-list-from-file han-
dler added. This handler converts the
map entry value into a File reference
and attempts to read its contents into
a list of lines. If the file reference does
not exist or is invalid (e.g, not a file
or with insufficient permissions), an
empty list is assigned instead.

Changed

• TEXplate template path resolution
has changed. Use -t article to
get the default article template.
If you want to specify a file in-
stead, use -t article.toml or -t
/my/path/to/file.toml. Relative

11

paths will be resolved against the
working directory.

• Updated dependencies.

1.0.2 (2020-02-02)

Fixed

• TEXplate now finds its templates even
on Windows.

Changed

• TEXplate now finishes its transition to
Kotlin. We did not change any func-
tionality in the course of this change.

• Templates are now provided as re-
sources from the JAR instead of a sep-
arate folder on the hard drive.

1.0.1 (2020-01-17)

Changed

• TEXplate will now distribute only non-
generic template file names. In
the system’s template directory, we
search for texplate-<name>.toml as
well.

1.0.0 (2020-01-15)

Added

• Base functionality and default tem-
plates.

• User manual.

12

