
polexpr root localization examples

Jean-François Burnol

To access the reference documentation:
texdoc polexpr.html

The package provides a parser \poldef of algebraic polynomial expressions.
Once defined, a polynomial is usable by its name either as a numerical function in \xintexpr/\xin⤸

teval, or for additional polynomial definitions, or as argument to the package macros.
This document illustrates root localization via usage of macros such as \PolToSturm and \PolStur⤸

mIsolateZeros which implement the Sturm theorem:

• Root localization based on Sturm theorem was added at release 0.4 (2018/02/16).

• Ability to find all rational roots was added at release 0.7.2 (2018/12/09).

As of 0.8 (2021/03/29), polexpr is usable with Plain TEX and not only with LATEX. The examples here
use most of the time a syntax which works with both.

Copying-pasting from pdf the example source may lose formatting. Formerly, they were included
verbatim in the html documentation. Here they are both rendered verbatim and got executed during the
LATEX run which created this pdf file, with the output shown after the source code.

Regarding how polynomial coefficients are printed on the typeset page by \PolTypeset:

• The default for \PolTypesetOne is to use \xintTeXsignedFrac with LATEX, \xintTeXsigne⤸
dOver with Plain. See the xintexpr documentation for a description of what these macros do. A
sensible definition is:
\def\PolTypesetOne#1{\PolDecToString{\xintREZ{#1}}}%

It means to use decimal notation, with perhaps a trailing denominator if the argument is a fraction,
and will suppress trailing zeros after the decimal mark.

• As these are expandable macros, they are usable to redefine \PolToExprCmd as well:
\def\PolToExprCmd#1{\PolDecToString{\xintREZ{#1}}}%

This will customize the output of \PolToExpr (which a priori is destined for writes to external files
but may also be used on the typeset page).

With \xintverbosetrue in the TEX source extra information relative to the internal data manipulated
by the macros will be written to the .log file.

Package macros related to root localization create (user-level) new polynomials, or numeric
variables, via a naming scheme using the given <sturmname> as prefix. It is thus advisable to keep
this <sturmname> name-space separate from the one used to name polynomial or scalar variables.

1

https://www.ctan.org/pkg/polexpr
https://en.wikipedia.org/wiki/Sturm%27s_theorem
https://en.wikipedia.org/wiki/Sturm%27s_theorem
https://www.ctan.org/pkg/polexpr
https://www.ctan.org/pkg/xintexpr

Regrettably all examples here use the condemnable \PolToSturm{f}{f} practice which means
that internally defined polynomials will use as prefix the original polynomial name. This merge of
namespaces may cause overwriting previously defined data and may lead to hard-to-debug problems.

1 A first example
In this example the polynomial is square-free.
\poldef f(x) := xˆ7 - xˆ6 - 2x + 1;

%

\PolToSturm{f}{f}

\PolSturmIsolateZeros{f}

The \PolTypeset{f} polynomial has \PolSturmNbOfIsolatedZeros{f} distinct real

roots which are located in the following intervals:

\PolPrintIntervals{f}

The 𝑥7 − 𝑥6 − 2𝑥 + 1 polynomial has 3 distinct real roots which are located in the following intervals:

−2 < 𝑍1 < −1
0.4 < 𝑍2 < 0.5

1 < 𝑍3 < 2

Here is the second root with ten more decimal digits:

\PolRefineInterval[10]{f}{2}

$$\PolSturmIsolatedZeroLeft{f}{2}<Z_2<\PolSturmIsolatedZeroRight{f}{2}$$

Here is the second root with ten more decimal digits:

0.49623869487 < 𝑍2 < 0.49623869488

And here is the first root with twenty digits after decimal mark:

\PolEnsureIntervalLength{f}{1}{-20}

$$\PolSturmIsolatedZeroLeft{f}{1}<Z_1<\PolSturmIsolatedZeroRight{f}{1}$$

And here is the first root with twenty digits after decimal mark:

−1.07196788410802660342 < 𝑍1 < −1.07196788410802660341

The first element of the Sturm chain has degree $\PolDegree{f_0}$. As

this is the original degreee \PolDegree{f} we know that f is square free.

Its derivative is up to a constant \PolTypeset{f_1} (in this example

it is identical with it).

\PolToSturm{f_1}{f_1}\PolSturmIsolateZeros{f_1}%

The derivative has \PolSturmNbOfIsolatedZeros{f_1} distinct real

roots:

\PolPrintIntervals[W]{f_1}%

\PolEnsureIntervalLengths{f_1}{-10}%

Here they are with ten digits after decimal mark:

\PolPrintIntervals[W]{f_1}

The first element of the Sturm chain has degree 7. As this is the original degreee 7 we know that 𝑓 is
square free. Its derivative is up to a constant 7𝑥6 − 6𝑥5 − 2 (in this example it is identical with it). The

2

derivative has 2 distinct real roots:

−0.8 < 𝑊1 < −0.7
1.06 < 𝑊2 < 1.07

Here they are with ten digits after decimal mark:

−0.7113598308 < 𝑊1 < −0.7113598307
1.0653438848 < 𝑊2 < 1.0653438849

\PolDiff{f_1}{f''}
\PolToSturm{f''}{f''}
\PolSturmIsolateZeros{f''}
The second derivative is \PolTypeset{f''}.
It has \PolSturmNbOfIsolatedZeros{f''} distinct real
roots:

\PolPrintIntervals[X]{f''}%
Here is the positive one with 20 digits after decimal mark:

\PolEnsureIntervalLength{f''}{2}{-20}%
$$X_2 = \PolSturmIsolatedZeroLeft{f''}{2}\dots$$

The second derivative is 42𝑥5 − 30𝑥4. It has 2 distinct real roots:

𝑋1 = 0
0.7 < 𝑋2 < 0.8

Here is the positive one with 20 digits after decimal mark:

𝑋2 = 0.71428571428571428571 . . .

2 A degree four polynomial with nearby roots
Notice that this example is a bit outdated as 0.7 release has added \PolSturmIsolateZeros**{<stur⤸
mname>} which would find exactly the roots. The steps here retain their interest when one is interested in
finding isolating intervals for example to prepare some demonstration of dichotomy method.
\PolDef{Q}{(x-1.050001)(x-1.105001)(x-1.110501)(x-1.111051)}

\PolTypeset{Q}

\PolToSturm{Q}{Q} % it is allowed to use same prefix for Sturm chain

\PolSturmIsolateZeros{Q}

\PolPrintIntervals{Q}

𝑥4−4376554·10−6𝑥3+7181524404656·10−12𝑥2−5236452059410679654·10−18𝑥+1431546080701127890651551·
10−24

1.05 < 𝑍1 < 1.06
1.10 < 𝑍2 < 1.11

1.110 < 𝑍3 < 1.111
1.111 < 𝑍4 < 1.112

\PolRefineInterval*{Q}{1}

\PolRefineInterval*{Q}{2}

\PolRefineInterval*{Q}{3}

\PolRefineInterval*{Q}{4}

3

\PolPrintIntervals{Q}

𝑍1 = 1.050001
1.105 < 𝑍2 < 1.106

1.1105 < 𝑍3 < 1.1106
1.11105 < 𝑍4 < 1.11106

\PolEnsureIntervalLengths{Q}{-6}

\PolPrintIntervals{Q}

% finds here all roots exactly

𝑍1 = 1.050001
𝑍2 = 1.105001
𝑍3 = 1.110501
𝑍4 = 1.111051

3 The degree nine polynomial with 0.99, 0.999, 0.9999 as triple roots
Define a user command (xinttools is loaded automatically by polexpr):
\def\showmultiplicities#1{% #1 = "sturmname"

\xintFor* ##1 in {\xintSeq{1}{\PolSturmNbOfIsolatedZeros{#1}}}\do{%

The multiplicity is \PolSturmIsolatedZeroMultiplicity{#1}{##1}

\PolSturmIfZeroExactlyKnown{#1}{##1}%

{at the root $x=\PolSturmIsolatedZeroLeft{#1}{##1}$}

{for the root such that

$\PolSturmIsolatedZeroLeft{#1}{##1}<x<\PolSturmIsolatedZeroRight{#1}{##1}$}

\par

}}%

\PolDef{f}{(x-0.99)ˆ3(x-0.999)ˆ3(x-0.9999)ˆ3}

\def\PolTypesetOne#1{\PolDecToString{\xintREZ{#1}}}

\PolTypeset{f}\par

𝑥9−8.9667𝑥8+35.73400293𝑥7−83.070418400109𝑥6+124.143648875193123𝑥5−123.683070924326075877𝑥4+
82.149260397553075617891𝑥3−35.07602992699900159127007𝑥2+8.7364078733314648368671733𝑥−
0.967100824643585986488103299
\PolToSturm{f}{f}% it is allowed to use "polname" as "sturmname" too

\PolSturmIsolateZerosAndGetMultiplicities{f}% use the "sturmname" here

% or \PolSturmIsolateZeros*{f} which is exactly the same, but shorter..

\showmultiplicities{f}

The multiplicity is 3 at the root 𝑥 = 0.99
The multiplicity is 3 at the root 𝑥 = 0.999
The multiplicity is 3 at the root 𝑥 = 0.9999
It is fun to modify only a tiny bit the polynomial and see if polexpr survives:
\PolDef{g}{f(x)+1e-27}

\PolTypeset{g}\par

\PolToSturm{g}{g}

\PolSturmIsolateZeros*{g}

\showmultiplicities{g}

𝑥9−8.9667𝑥8+35.73400293𝑥7−83.070418400109𝑥6+124.143648875193123𝑥5−123.683070924326075877𝑥4+
82.149260397553075617891𝑥3−35.07602992699900159127007𝑥2+8.7364078733314648368671733𝑥−
0.967100824643585986488103298

4

https://www.ctan.org/pkg/xint
https://www.ctan.org/pkg/polexpr

The multiplicity is 1 for the root such that 0.98 < 𝑥 < 0.99
The multiplicity is 1 for the root such that 0.9991 < 𝑥 < 0.9992
The multiplicity is 1 for the root such that 0.9997 < 𝑥 < 0.9998
This means that the multiplicity-3 roots each became a real and a pair of complex ones. Let’s see them

better:
\PolEnsureIntervalLengths{g}{-10}

\showmultiplicities{g}

The multiplicity is 1 for the root such that 0.9899888032 < 𝑥 < 0.9899888033
The multiplicity is 1 for the root such that 0.9991447980 < 𝑥 < 0.9991447981
The multiplicity is 1 for the root such that 0.9997663986 < 𝑥 < 0.9997663987

4 A degree five polynomial with three rational roots
\poldef Q(x) := 1581755751184441 xˆ5

-14907697165025339 xˆ4

+48415668972339336 xˆ3

-63952057791306264 xˆ2

+46833913221154895 x

-49044360626280925;

\PolToSturm{Q}{Q}

\def\PolTypesetCmdPrefix#1{\allowbreak\xintiiifSgn{#1}{}{+}{+}}%

$Q_0(x) = \PolTypeset{Q_0}$

\PolSturmIsolateZeros**{Q}

\PolPrintIntervals{Q}

$Q_{norr}(x) = \PolTypeset{Q_norr}$

𝑄0 (𝑥) = 1581755751184441𝑥5−14907697165025339𝑥4+48415668972339336𝑥3−63952057791306264𝑥2

+ 46833913221154895𝑥 − 49044360626280925

𝑍1 = 833719/265381
𝑍2 = 165707065/52746197
𝑍3 = 355/113

𝑄𝑛𝑜𝑟𝑟 (𝑥) = 𝑥2 + 1
Here, all real roots are rational. Let’s get their decimal expansion too:

\begingroup

% print decimal expansion of the found roots

\def\PolPrintIntervalsPrintExactZero

{\xintTrunc{20}{\PolPrintIntervalsTheLeftEndPoint}\dots}

\PolPrintIntervals{Q}

\endgroup % we localized the modified \PolPrintIntervalsPrintExactZero

𝑍1 = 3.14159265358107777120 . . .
𝑍2 = 3.14159265358979340254 . . .
𝑍3 = 3.14159292035398230088 . . .

5 A Mignotte type polynomial
\PolDef{P}{xˆ10 - (10x-1)ˆ2}%

5

\PolTypeset{P} % prints it in expanded form

\PolToSturm{P}{P} % we can use same prefix for Sturm chain

\PolSturmIsolateZeros{P} % finds 4 real roots

This polynomial has \PolSturmNbOfIsolatedZeros{P} distinct real roots:

\PolPrintIntervals{P}%

𝑥10 − 100𝑥2 + 20𝑥 − 1 This polynomial has 4 distinct real roots:

−2 < 𝑍1 < −1
0.09 < 𝑍2 < 0.10
0.1 < 𝑍3 < 0.2

1 < 𝑍4 < 2

Let us refine the second and third intervals to separate the corresponding roots:
\PolRefineInterval*{P}{2}% will refine to 0.0999990 < Z_2 < 0.0999991

\PolRefineInterval*{P}{3}% will refine to 0.100001 < Z_3 < 0.100002

\PolPrintIntervals{P}%

−2 < 𝑍1 < −1
0.0999990 < 𝑍2 < 0.0999991
0.100001 < 𝑍3 < 0.100002

1 < 𝑍4 < 2
Let us now get to know all roots with 10 digits after decimal mark:
\PolEnsureIntervalLengths{P}{-10}%

\PolPrintIntervals{P}% now all roots are known 10 decimal digits after mark

−1.8024470510 < 𝑍1 < −1.8024470509
0.0999990000 < 𝑍2 < 0.0999990001
0.1000010000 < 𝑍3 < 0.1000010001
1.7523477264 < 𝑍4 < 1.7523477265

Finally, we display 20 digits of the second root:
\PolEnsureIntervalLength{P}{2}{-20}% makes Z_2 known with 20 digits after mark

$$\PolSturmIsolatedZeroLeft{P}{2}<Z_2<\PolSturmIsolatedZeroRight{P}{2}$$

0.09999900004999650028 < 𝑍2 < 0.09999900004999650029

6 The Wilkinson polynomial
See https://en.wikipedia.org/wiki/Wilkinson%27s_polynomial.
%\xintverbosetrue % for the curious...

\poldef f(x) := mul((x - i), i = 1..20);

\def\PolTypesetCmdPrefix#1{\allowbreak\xintiiifSgn{#1}{}{+}{+}}%

\def\PolTypesetOne#1{\xintDecToString{#1}}%

\noindent\PolTypeset{f}

\PolToSturm{f}{f}

\PolSturmIsolateZeros{f}

\PolPrintIntervals{f}

% \vfill\eject

6

https://en.wikipedia.org/wiki/Wilkinson%27s_polynomial

% This page is commented out because it takes about 30s on a 2GHz CPU

% \poldef g(x) := f(x) - 2**{-23} x**19;

% \PolToSturm{g}{g}

% \noindent\PolTypeset{g_0}% integer coefficient primitive polynomial

% \PolSturmIsolateZeros{g}

% \PolEnsureIntervalLengths{g}{-10}

% \PolPrintIntervals*{g}

𝑥20−210𝑥19+20615𝑥18−1256850𝑥17+53327946𝑥16−1672280820𝑥15+40171771630𝑥14−756111184500𝑥13

+11310276995381𝑥12−135585182899530𝑥11+1307535010540395𝑥10−10142299865511450𝑥9+63030812099294896𝑥8

−311333643161390640𝑥7+1206647803780373360𝑥6−3599979517947607200𝑥5+8037811822645051776𝑥4

−12870931245150988800𝑥3+13803759753640704000𝑥2−8752948036761600000𝑥+2432902008176640000

𝑍1 = 1
𝑍2 = 2
𝑍3 = 3
𝑍4 = 4
𝑍5 = 5
𝑍6 = 6
𝑍7 = 7
𝑍8 = 8
𝑍9 = 9
𝑍10 = 10
𝑍11 = 11
𝑍12 = 12
𝑍13 = 13
𝑍14 = 14
𝑍15 = 15
𝑍16 = 16
𝑍17 = 17
𝑍18 = 18
𝑍19 = 19
𝑍20 = 20

The first polynomial is handled fast enough, but the modified one f(x) - 2**-23 x**19 takes about
20x longer.

Its Sturm chain polynomials have integer coefficients with up to 321 digits, whereas (surprisingly
perhaps) those of the Sturm chain polynomials derived from f never have more than 21 digits ...

Once the Sturm chain is computed and the zeros isolated, obtaining their decimal digits is relatively
faster. Here are the ten real roots of f(x) - 2**-23 x**19which would be computed by the commented-
out code above:
Z_1 = 0.9999999999...

Z_2 = 2.0000000000...

Z_3 = 2.9999999999...

Z_4 = 4.0000000002...

Z_5 = 4.9999999275...

Z_6 = 6.0000069439...

Z_7 = 6.9996972339...

Z_8 = 8.0072676034...

Z_9 = 8.9172502485...

7

Z_10 = 20.8469081014...

7 The second Wilkinson polynomial
\poldef f(x) := mul(x - 2ˆ-i, i = 1..20);

%\PolTypeset{f}

\PolToSturm{f}{f}

\PolSturmIsolateZeros**{f}

\PolPrintIntervals{f}

𝑍1 = 0.00000095367431640625
𝑍2 = 0.0000019073486328125
𝑍3 = 0.000003814697265625
𝑍4 = 0.00000762939453125
𝑍5 = 0.0000152587890625
𝑍6 = 0.000030517578125
𝑍7 = 0.00006103515625
𝑍8 = 0.0001220703125
𝑍9 = 1/4096
𝑍10 = 1/2048
𝑍11 = 1/1024
𝑍12 = 1/512
𝑍13 = 1/256
𝑍14 = 1/128
𝑍15 = 0.015625
𝑍16 = 0.03125
𝑍17 = 0.0625
𝑍18 = 0.125
𝑍19 = 0.25
𝑍20 = 0.5

This takes more time than the polynomial with 1, 2, .., 20 as roots but less than the latter modified by
the 2**-23 tiny change to one of its coefficient.

There is some incoherence in output format which has its source in the fact that some roots are found
in branches which can only find decimal roots, whereas some are found in branches which could find
general fractions and they use \xintIrr before storage of the found root. This may evolve in future.

8 The degree 41 polynomial with -2, -1.9, -1.8, ..., 0, 0.1, ..., 1.9, 2 as
roots

\PolDef{P}{mul((x-i*1e-1), i=-20..20)}% i/10 is same but less efficient

In the defining expression we could have used i/10 but this gives less efficient internal form for the
coefficients (the 10’s end up in denominators).
\begingroup

\def\PolToExprCmd#1{\PolDecToString{\xintREZ{#1}}}

\def\PolToExprTermPrefix#1{\newline\xintiiifSgn{#1}{}{+}{+}}

\def\PolToExprTimes{${}\cdot{}$}

8

\ttfamily

\PolToExpr{P}

\endgroup

xˆ41

-28.7 · xˆ39
+375.7117 · xˆ37
-2975.11006 · xˆ35
+15935.28150578 · xˆ33
-61167.527674162 · xˆ31
+173944.259366417394 · xˆ29
-373686.963560544648 · xˆ27
+613012.0665016658846445 · xˆ25
-771182.31133138163125495 · xˆ23
+743263.86672885754888959569 · xˆ21
-545609.076599482896371978698 · xˆ19
+301748.325708943677229642930528 · xˆ17
-123655.8987669450434698869844544 · xˆ15
+36666.1782054884005855608205864192 · xˆ13
-7607.85821367459445649518380016128 · xˆ11
+1053.15135918687298508885950223794176 · xˆ9
-90.6380005918141132650786081964032 · xˆ7
+4.33701563847327366842552218288128 · xˆ5
-0.0944770968420804735498178265088 · xˆ3
+0.00059190121813899276854174416896 · x

which shows coefficients with up to 36 significant digits...
Stress test: not a hard challenge to xint + polexpr, but be a bit patient!
\PolDef{P}{mul((x-i*1e-1), i=-20..20)}%

\PolToSturm{P}{S} % dutifully computes S_0, ..., S_{41}

% the [1] optional argument limits the search to interval (-10,10)

\PolSturmIsolateZeros[1]{S} % finds *exactly* (but a bit slowly) all 41 roots!

\PolPrintIntervals{S} % nice, isn't it?
% Unfortunately \PolPrintIntervals uses a non-breakable array environment

% But see next section on how to customize \PolPrintIntervals and let it

% allow pagebreaks

9

https://www.ctan.org/pkg/xint
https://www.ctan.org/pkg/polexpr

𝑍1 = −2
𝑍2 = −1.9
𝑍3 = −1.8
𝑍4 = −1.7
𝑍5 = −1.6
𝑍6 = −1.5
𝑍7 = −1.4
𝑍8 = −1.3
𝑍9 = −1.2
𝑍10 = −1.1
𝑍11 = −1
𝑍12 = −0.9
𝑍13 = −0.8
𝑍14 = −0.7
𝑍15 = −0.6
𝑍16 = −0.5
𝑍17 = −0.4
𝑍18 = −0.3
𝑍19 = −0.2
𝑍20 = −0.1
𝑍21 = 0
𝑍22 = 0.1
𝑍23 = 0.2
𝑍24 = 0.3
𝑍25 = 0.4
𝑍26 = 0.5
𝑍27 = 0.6
𝑍28 = 0.7
𝑍29 = 0.8
𝑍30 = 0.9
𝑍31 = 1
𝑍32 = 1.1
𝑍33 = 1.2
𝑍34 = 1.3
𝑍35 = 1.4
𝑍36 = 1.5
𝑍37 = 1.6
𝑍38 = 1.7
𝑍39 = 1.8
𝑍40 = 1.9
𝑍41 = 2

Release 0.5 has experimental addition of optional argument E to \PolSturmIsolateZeros.
It instructs to search roots only in interval (-10ˆE, 10ˆE). Important: the extremities are
assumed to not be roots. In this example, the [1] in \PolSturmIsolateZeros[1]{S}
gives some speed gain; without it, it turns out in this case that polexpr would have started
with (-10ˆ6, 10ˆ6) interval.
Please note that this feature may be removed or modified.

10

https://www.ctan.org/pkg/polexpr

9 Roots of a Chebyshev polynomial
\poldef T_0(x) := 1;

\poldef T_1(x) := x;

\catcode`@ 11

\count@ 2

\xintloop

\poldef T_\the\count@(x) :=

2x*T_\the\numexpr\count@-1\relax

- T_\the\numexpr\count@-2\relax;

\ifnum\count@<15

\advance\count@ 1

\repeat

\catcode`@ 12

$$T_{15} = \PolTypeset[X]{T_15}$$

\PolToSturm{T_15}{T_15}

\PolSturmIsolateZeros*{T_15}% "*" as we will want to confirm multiplicity one

% takes time (each next decimal digit is obtained by dichotomy)

\PolEnsureIntervalLengths{T_15}{-20}% ensure 20 decimal digits for each root

𝑇15 = 16384𝑋15 − 61440𝑋13 + 92160𝑋11 − 70400𝑋9 + 28800𝑋7 − 6048𝑋5 + 560𝑋3 − 15𝑋

Here is now an example of customization. Indeed \PolPrintIntervals default uses array and
thus does not allow page breaks. And it uses Left < Z < Right as presentation of roots and we would
like here rather Z = decimal expansion....
% 0.8.6 adds an internal patch which would allow usage of amsmath environments

% like this:

% \def\PolPrintIntervalsBeginEnv{\begin{align*}}

% \def\PolPrintIntervalsEndEnv{\end{align*}}

% (the problem was that align evaluates twice its contents so global variables

% need a reset at the end of first pass, which is what 0.8.6 took care of)

%

% Let's simply do this:
\def\PolPrintIntervalsBeginEnv{\begingroup\leftskip3cm\relax}

\def\PolPrintIntervalsEndEnv{\par\endgroup}

%

% The rows are separated by \PolPrintIntervalsRowSeparator which defaults to \\

% with LaTeX and \cr with Plain. (prior to 0.8.6 it was hardcoded)

\def\PolPrintIntervalsRowSeparator{\\[\jot]}

% And we enter math mode manually at each row, copying pasting from package

% defaults with some added mathon/mathoff:

\def\PolPrintIntervalsKnownRoot{%

$\PolPrintIntervalsPrintMultiplicity\quad

\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}=%

\PolPrintIntervalsPrintExactZero

$

}%

\def\PolPrintIntervalsUnknownRoot{%

$\PolPrintIntervalsPrintMultiplicity\quad

\xintifSgn{\PolPrintIntervalsTheLeftEndPoint}%

{\xintifSgn{\PolPrintIntervalsTheRightEndPoint}

11

{\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}=%

\PolPrintIntervalsPrintRightEndPoint\dots}%

{0>\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}>%

\PolPrintIntervalsPrintLeftEndPoint}%

{\impossibleA}}%

{\xintifSgn{\PolPrintIntervalsTheRightEndPoint}

{\impossibleB}%

{\impossibleC}%

{0<\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}<%

\PolPrintIntervalsPrintRightEndPoint}}%

{\xintifSgn{\PolPrintIntervalsTheRightEndPoint}

{\impossibleD}%

{\impossibleE}%

{\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}=%

\PolPrintIntervalsPrintLeftEndPoint\dots}}%

$

}%

\PolPrintIntervals{T_15}

(mult. 1) 𝑍1 = −0.99452189536827333692 . . .
(mult. 1) 𝑍2 = −0.95105651629515357211 . . .
(mult. 1) 𝑍3 = −0.86602540378443864676 . . .
(mult. 1) 𝑍4 = −0.74314482547739423501 . . .
(mult. 1) 𝑍5 = −0.58778525229247312916 . . .
(mult. 1) 𝑍6 = −0.40673664307580020775 . . .
(mult. 1) 𝑍7 = −0.20791169081775933710 . . .
(mult. 1) 𝑍8 = 0
(mult. 1) 𝑍9 = 0.20791169081775933710 . . .
(mult. 1) 𝑍10 = 0.40673664307580020775 . . .
(mult. 1) 𝑍11 = 0.58778525229247312916 . . .
(mult. 1) 𝑍12 = 0.74314482547739423501 . . .
(mult. 1) 𝑍13 = 0.86602540378443864676 . . .
(mult. 1) 𝑍14 = 0.95105651629515357211 . . .
(mult. 1) 𝑍15 = 0.99452189536827333692 . . .

12

	A first example
	A degree four polynomial with nearby roots
	The degree nine polynomial with 0.99, 0.999, 0.9999 as triple roots
	A degree five polynomial with three rational roots
	A Mignotte type polynomial
	The Wilkinson polynomial
	The second Wilkinson polynomial
	The degree 41 polynomial with -2, -1.9, -1.8, ..., 0, 0.1, ..., 1.9, 2 as roots
	Roots of a Chebyshev polynomial

