The GFtype processor

(Version 3.1, March 1991)

Section
Introduction . ... ... . e 1
The character Set . . .. ... ot 8
Generic font file format ... ... . 13
Input from binary files . ... ... 20
Optional modes of OULPUL . . ... oot e 25
The IMAage aITAY . ..ottt e e e e e e 35
Translation to symbolic form . ... .. . 44
Reading the postamble . .. ... . e 61
The main PrOgraml . . ...ttt e e e e e e e e e 66
System-dependent changes ... ... ... ... 73
IndeX o e 79

Editor’s Note: The present variant of this C/WEB source file has been modified for use in

the TEX Live system.

The following sections were changed by the change file: 1, 3, 4, 5, 6, 7, 9, 22, 25, 26, 27, 29, 30,
31, 32, 33, 34, 37, 38, 39, 40, 45, 48, 51, 66, 73, 74, 75, 76, 77, 78, 79.

The preparation of this report was supported in part by the National Science Founda-

tion under grants IST-8201926, MCS-8300984, and CCR-8610181, and by the System

Development Foundation. ‘TEX’ is a trademark of the American Mathematical Society.
‘METAFONT’ is a trademark of Addison-Wesley Publishing Company.

March 12, 2025 at 15:40

101



102 INTRODUCTION GF type changes for C §1

1* Introduction. The GFtype utility program reads binary generic-font (“GF”) files that are produced
by font compilers such as METAFONT, and converts them into symbolic form. This program has three chief
purposes: (1) It can be used to look at the pixels of a font, with one pixel per character in a text file; (2) it
can be used to determine whether a GF file is valid or invalid, when diagnosing compiler errors; and (3) it
serves as an example of a program that reads GF files correctly, for system programmers who are developing
GF-related software.

The original version of this program was written by David R. Fuchs in March, 1984. Donald E. Knuth
made a few modifications later that year as METAFONT was taking shape.

The banner string defined here should be changed whenever GFtype gets modified.

define my_name = “gftype”
define banner = “This_is GFtype, Version; 3.1" {printed when the program starts }

3¥* The binary input comes from gf-file, and the symbolic output is written on Pascal’s standard output
file. The term print is used instead of write when this program writes on output, so that all such output
could easily be redirected if desired.
define print(#) = write(stdout , #)
define print_in(#) = write_ln(stdout, #)
define print_nl = write_In(stdout)
program GF_type (gf-file, output);
const ( Constants in the outer block 5*)
type (Types in the outer block 8)
var (Globals in the outer block 4*)
(Define parse_arguments 73*)
procedure initialize; { this procedure gets things started properly }
var i: integer; {loop index for initializations }
bound_default: integer; {temporary for setup }
bound_name: const_cstring; {temporary for setup }
begin kpse_set_program_name (argv[0], my_name); kpse_init_prog( GFTYPE", 0, nil, nil);
parse_arguments; print(banner); print_ln(version_string); (Set initial values 6*)
end;

4% This module is deleted, because it is only useful for a non-local goto, which we can’t use in C.
Instead, we define parameters settable at runtime.

( Globals in the outer block 4*) =

line_length: integer; { zxzx strings will not produce lines longer than this }
maz_rows: integer; {largest possible vertical extent of pixel image array }
max-_cols: integer; {largest possible horizontal extent of pixel image array }
maz_row: integer; {current vertical extent of pixel image array }

maz_col: integer; {current horizontal extent of pixel image array }

See also sections 10, 21, 23, 25% 35, 37* 41, 46, 54, 62, and 67.

This code is used in section 3*.



§5 GF type changes for C INTRODUCTION 103

5% Three parameters can be changed at run time to extend or reduce GFtype’s capacity. Note that the
total number of bits in the main image_array will be

(maz_row + 1) x (maz_col + 1).

(METAFONT’s full pixel range is rarely implemented, because it would require 8 megabytes of memory.)

define def line_length = 500 { default line_length value }
define maz_image = 8191 {largest possible extent of METAFONT’s pixel image array }

( Constants in the outer block 5*) =
inf_line_length = 20; sup_line_length = 1023;

This code is used in section 3*.

6* Here are some macros for common programming idioms.

define incr(#) =# <« #+1 {increase a variable by unity }
define decr(#) =#+ #—1 {decrease a variable by unity }
define negate(#) = # <+ —# {change the sign of a variable }

define const_chk(#) =
begin if # < infQ&# then # < infQ&#
else if # > sup@&# then # « supQ&#
end { setup_bound_var stuff duplicated in tex.ch. }
define setup_bound_var (#) = bound_default + #; setup_bound_var_end
define setup_bound_var_end (#) = bound-name + #; setup_bound_var_end_end
define setup_bound_var_end_end (#) = setup_bound_variable (address_of (#), bound_name, bound_default);

(Set initial values 6*) =
{See comments in tex.ch for why the name has to be duplicated. }
setup_bound_var (def-line_length)( line_length~)(line_length);
{ zzz strings will not produce lines longer than this }
setup_bound_var (maz_image )( "max_rows ") (maz_rows);
{largest allowed vertical extent of pixel image array }
setup_bound_var (maz_image)( max_cols")(maz_cols);
{largest allowed horizontal extent of pixel image array }
const_chk (line_length);
if maz_rows > max_image then maz_rows < max_image;
if maz_cols > maz_image then maz_cols <— max_image;
image_array <— nil;
See also sections 11, 12, 26*, 47, and 63.

This code is used in section 3*.

7¥ 1If the GF file is badly malformed, the whole process must be aborted; GFtype will give up, after issuing
an error message about the symptoms that were noticed.

Such errors might be discovered inside of subroutines inside of subroutines, so we might want to abort the
program with an error message.

define abort (#) =
begin write_ln(stderr,#); uexit(1);
end
define bad_gf (#) = abort( Bad GF_file: ", #, ! ")



104 THE CHARACTER SET GF type changes for C 68

9% The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lower case letters. Nowadays, of course, we need to deal with both upper and
lower case alphabets in a convenient way, especially in a program like GFtype. So we shall assume that the
Pascal system being used for GFtype has a character set containing at least the standard visible characters
of ASCII code ("!" through "~").

Some Pascal compilers use the original name char for the data type associated with the characters in text
files, while other Pascals consider char to be a 64-element subrange of a larger data type that has some
other name. In order to accommodate this difference, we shall use the name text_char to stand for the
data type of the characters in the output file. We shall also assume that text_char consists of the elements
chr (first_text_char) through chr(last_text_char), inclusive. The following definitions should be adjusted if
necessary.

define char =0 .. 255

define text_char = char {the data type of characters in text files }

define first_text_char =0 {ordinal number of the smallest element of text_char }
define last_text_char =127 {ordinal number of the largest element of text_char }

( Types in the outer block 8) +=
text_file = packed file of text_char;



§13 GF type changes for C GENERIC FONT FILE FORMAT 105

22¥ In C, we do path searching based on the user’s environment or the default path.

procedure open_gf_file; { prepares to read packed bytes in gf-file }
begin gf_file < kpse_open_file(cmdline (optind ), kpse_gf-format); cur_loc < 0;
(Print all the selected options 34* );
end;



106 OPTIONAL MODES OF OUTPUT GF type changes for C §25

25¥ Optional modes of output. GFtype will print different quantities of information based on some
options that the user must specify: We set wants_mnemonics if the user wants to see a mnemonic dump of
the GF file; and we set wants_pizels if the user wants to see a pixel image of each character.

When GFtype begins, it engages the user in a brief dialog so that the options will be specified. This
part of GFtype requires nonstandard Pascal constructions to handle the online interaction; so it may
be preferable in some cases to omit the dialog and simply to produce the maximum possible output
(wants-mnemonics = wants_pizels = true). On other hand, the necessary system-dependent routines are
not complicated, so they can be introduced without terrible trauma.

(Globals in the outer block 4*) +=
wants_mnemonics: c-int_type; { controls mnemonic output }
wants_pizels: c_int_type; { controls pixel output }

26* (Set initial values 6*) +=

27% There is no terminal input. The options for running this program are offered through command line
options.

29¥* During the dialog, extensions of GFtype might treat the first blank space in a line as the end of that
line. Therefore input_In makes sure that there is always at least one blank space in buffer.

(This routine is more complex than the present implementation needs, but it has been copied from DVItype
so that system-dependent changes that worked before will work again.)

30% This was so humdrum that we got rid of it. (module 30)
31* The dialog procedure module is eliminated. (module 31)
32¥ So is its first part. (module 32)

33*% So is its second part. (module 33)

34* After the command-line switches have been processed, we print the options so that the user can see
what GFtype thought was specified.

(Print all the selected options 34* ) =
print( Options,selected: Mnemonic output,=,");
if wants_mnemonics then print(“true”) else print( false’);
print (" ;upixel output,=,");
if wants_pizels then print(“true~) else print( false”);
print_in(~.7)

This code is used in section 22*.



§35 GF type changes for C THE IMAGE ARRAY 107

37% In order to allow different systems to change the image array easily from row-major order to column-
major order (or vice versa), or to transpose it top and bottom or left and right, we declare and access it as
follows.

define image = image_array[m + (maz_col + 1) x n|

( Globals in the outer block 4*) +=
image_array: Tpixel;

38*% A boc command has parameters min_m, mazx_m, min_n, and maz_n that define a rectangular subarray
in which the pixels of the current character must lie. The program here computes limits on GFtype’s modified
m and n variables, and clears the resulting subarray to all white.

(There may be a faster way to clear a subarray on particular systems, using nonstandard extensions of
Pascal.)

( Clear the image 38*) =
begin mazr_col <+ mar_m_stated — min_m_stated — 1;
if max_col > maz_cols then maz_col < max_cols;
maz_row < mazr_n_stated — min_n_stated;
if maz_row > maz_rows then maz_row < maz_rows;
if (maz_row > 0) A (maz_col > 0) then image_array < zcalloc_array(pizel, maz_col, maz_row);
end

This code is used in section 71.

39*% With image_array allocated dynamically these are the same.

define maz_subrow = max_row {vertical size of current subarray of interest }
define maz_subcol = maz_col {horizontal size of current subarray of interest }

40*% As we paint the pixels of a character, we will record its actual boundaries in variables maz_m_observed
and maz_n_observed. Then the following routine will be called on to output the image, using blanks for
white and asterisks for black. Blanks are emitted only when they are followed by nonblanks, in order to
conserve space in the output. Further compaction could be achieved on many systems by using tab marks.
An integer variable b will be declared for use in counting blanks.
(Print the image 40*) =
begin ( Compare the subarray boundaries with the observed boundaries 42 );
if maz_subcol > 0 then {there was at least one paint command }
(Print asterisk patterns for rows 0 to maz_subrow 43)
else print_in(" (The character is entirely blank.) ");
if (maz_row > 0) A (maz_col > 0) then
begin libc_free(image_array); image_array < nil;
end;
end

This code is used in section 69.



108 TRANSLATION TO SYMBOLIC FORM GF type changes for C 844

45* We steal the following routine from METAFONT.
define unity = 200000 {26, represents 1.00000 }

procedure print_scaled (s : integer); { prints a scaled number, rounded to five digits }
var delta: integer; {amount of allowable inaccuracy }
begin if s < 0 then
begin print("-"); negate(s); {print the sign, if negative }
end;
print(s div unity : 1); {print the integer part }
s < 10 % (s mod unity) + 5;
if s # 5 then
begin delta < 10; print(~. );
repeat if delta > unity then s« s+ 100000 — (delta div 2); {round the final digit }
print(xzchr(ord(707) + (s div unity)]); s < 10 % (s mod unity); delta < delta * 10;
until s < delta;
end;
end;

48%* Before we get into the details of do_char, it is convenient to consider a simpler routine that computes
the first parameter of each opcode.

define four_cases(#) =#,#+ 1, #+2,#+3

define eight_cases(#) = four_cases(#), four_cases (# + 4)

define sizteen_cases(#) = eight_cases(#), eight_cases (# + 8)

define thirty_two_cases(#) = sizteen_cases (#), sizteen_cases (# + 16)

define thirty_seven_cases(#) = thirty_two_cases (#), four_cases (# + 32), # + 36
define sixty_four_cases(#) = thirty_two_cases (#), thirty_two_cases (# + 32)

function first_par (o : eight_bits): integer;
begin case o of
sixty_four_cases (paint_0): first_par < o — paint_0;
paint! , skipl, char_loc, char_loc + 1, zzzl: first_par < get_byte;
paintl + 1, skipl + 1, zxxl + 1: first_par < get_two_bytes;
paintl + 2, skipl + 2, xxxl + 2: first_par < get_three_bytes;
xxxl + 3, yyy: first_par < signed_quad;
boc, bocl , eoc, skip0 , no_op, pre, post, post_post , undefined_commands: first_par + 0;
sizty_four_cases(new_row_0): first_par < o — new_row_0;
sizty_four_cases(new_row_0 + 64): first_par < o — new_row_0;
thirty_seven_cases (new_row-0 + 128): first_par < o — new_row_-0;
othercases abort( internal error”)
endcases;
end;



§51 GF type changes for C TRANSLATION TO SYMBOLIC FORM 109

51*% The multiway switch in first_par, above, was organized by the length of each command; the one in
do_char is organized by the semantics.

(Start translation of command o and goto the appropriate label to finish the job 51*) =
if 0 < paint! + 3 then (Translate a sequence of paint commands, until reaching a non-paint 56 );
case o of
four_cases(skip0): { Translate a skip command 60 );
sizty_four_cases (new_row_0): {Translate a new_row command 59 );
sizty_four_cases (new_row_0 + 64): ( Translate a new_row command 59 );
thirty_seven_cases (new_row_0 + 128): ( Translate a new_row command 59 );

(Cases for commands no_op, pre, post, post_post, boc, and eoc 52)
four_cases(zxxl): (Translate an zzx command 53 );

yyy: { Translate a yyy command 55 );

othercases error( undefined command,,",0: 1, "! ")

endcases

This code is used in section 50.



110 READING THE POSTAMBLE GF type changes for C §61

66*¥ The main program. Now we are ready to put it all together. This is where GFtype starts, and
where it ends.

begin initialize; { get all variables initialized }

(Process the preamble 68 );

('Translate all the characters 69 );

print_nl; read_postamble; print( The_file had,,~, total_chars : 1, " character”);
if total_chars # 1 then print(“s”);

print_In("Laltogether. 7);

end.



§73 GF type changes for C SYSTEM-DEPENDENT CHANGES 111

73¥ System-dependent changes. Parse a Unix-style command line.

define argument_is(#) = (stremp (long-options|[option_index].name, #) = 0)
define do_nothing = {empty statement }
(Define parse_arguments 73*) =
procedure parse_arquments;
const n_options = 4; {Pascal won’t count array lengths for us. }
var long_options: array [0 .. n_options] of getopt_struct;
getopt_return_val: integer; option_index: c_int_type; current_option: 0 .. n_options;
begin (Define the option table 74*);
repeat getopt_return_val < getopt_long_only(argc, argv, ", long-options, address_of (option_indezx));
if getopt_return_val = —1 then
begin do_nothing; {End of arguments; we exit the loop below. }
end
else if getopt_return_val = "7" then
begin usage(my-name);
end
else if argument_is(“help~) then
begin usage_help(GFTYPE_HELP nil);
end
else if argument_is(“version”) then
begin print_version_and_exit (banner,nil, "D.R. Fuchs ", nil);
end; {Else it was a flag. }
until getopt_return_val = —1; {Now optind is the index of first non-option on the command line. We
must have one remaining argument. }
if (optind + 1 # argc) then
begin write_ln(stderr, my_-name, ~: Need exactly one_ file argument.  ); usage(my-name);
end;
end;

This code is used in section 3*.

74% Here are the options we allow. The first is one of the standard GNU options.

(Define the option table 74*) =
current_option < 0; long_options|[current_option].name < “help~;
long_options[current_option].has_arg < 0; long_options|current_option].flag <+ 0;
long_options [current_option].val < 0; incr(current_option);

See also sections 75%, 76*, 77* and 78%*.

This code is used in section 73*.

75¥ Another of the standard options.

(Define the option table 74*) +=
long_options[current_option].name  “version~; long_options[current_option].has_arg + 0;
long_options[current_option].flag < 0; long-options|[current_option].val < 0; incr(current_option);

76¥ Translate commands?

(Define the option table 74*) +=
long_-options[current_option].name < “mnemonics”; long-options|[current_option].has_arg < 0;
long_options [current_option).flag < address_of (wants-mnemonics);
long_options [current_option].val + 1; incr(current_option);



112 SYSTEM-DEPENDENT CHANGES GF type changes for C 877

77¥ Show pixels?

(Define the option table 74*) +=
long_options[current_option].name + “images”; long_options|current_option].has_arg + 0;
long_options [current_option).flag < address_of (wants_pizels); long_options|current_option].val + 1;
incr (current_option);

78%¥ An element with all zeros always ends the list.

(Define the option table 74*) +=
long_options[current_option].name < 0; long_options|current_option].has_arg <+ 0;
long_options[current_option].flag < 0; long_options|current_option].val < 0;



§79 GF type changes for C

79*% Index.
ifier is used.

The following sections were changed by the change file: 1, 3, 4, 5, 6, 7, 9, 22, 25, 26, 27, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40,

45, 48, 51, 66, 73, 74, 75, 76, 77, 78, 79.

-help: T74%

-version: T75%

a: 24, 67.

abort: TF 48%

address_of :  6F 73¥ 76F TT*

aok: 49.

arge: T3¥

argument_is: 73%*

argv: 3% 73*

ASCII_code: 8, 10.

b: 24, 67.
backpointer...should be p: 61.
backpointers: 18.

Bad GF file: T7¥

bad_char: 53, 54.

bad_gf: T¥ 50, 64, 68, 69.

banner: 1% 3F% 73*

black: 14, 15, 35, 36, 40% 57, 58, 59.

boc: 13,15, 16, 17, 18, 38*42, 44, 4849, 52, 69, T1.

boc occurred before eoc: 52.
bocl: 15, 16, 48F 52, 69.
boolean: 36, 49, 54.
bound_default: 3F 6*
bound_name: 3F G*

break: 28.

buffer: 29%*

byte n is not boc: 69.
byte_file: 20, 21.

c: 24, 61, 67.
c_int_type: 25F 73%*
char: 9%

char ended unexpectedly: 69.
char_loc: 15, 16, 18, 48 65.

char_locO: 15.

char_ptr: 46, 47, 64, 65, 71.

character location should be...: 65.
character_code: 46, 71.

check sum: 17.

check_sum: 61, 62.

Chinese characters: 18.

chr: 9% 10, 12.

cmdline: 22%

const_chk: G6*

const_cstring: 3¥

cs: 17.

cur_loc: 22¥23, 24, 50, 61, 64, 65, 69, 71.
current_option: 73¥ T4F T5FT6F TTF 78*

d: 24.

INDEX

Pointers to error messages appear here together with the section numbers where each ident-

decr: 6F 43, 53, 68.
def-line_length: 5% 6%

del_m: 15.
del_n: 15.
delta: 45%

design size: 17.

design_size: 61, 62.

dm: 15.

do_char: 44, 48% 49, 51F 69.
do_nothing: T73*

ds: 17.

duplicate locator...: 65.
dz: 15, 18.

dy: 15, 18.

eight_bits: 20, 24, 48F 49.
eight_cases: 48%*

else: 2.

end: 2.

endcases: 2.

eoc: 13, 15, 16, 17, 48* 52.

eof : 24, 50, 64.

error: 50, 51752, 61, 64, 65, 71.
false: 36, 49, 53.

First byte isn’t...: 68.
first_par: 48F 50, 51F 65.
first_text_char: 9F 12.

flag:  T4F THFTCF TTF T8F
four_cases: 48F 51%*

Fuchs, David Raymond: 17 19.
get_byte: 24, 48% 50, 53, 64, 65, 68, T1.
get_three_bytes: 24, 48%*
get_two_bytes: 24, 48%*
getopt_long_only: T73*
getopt_return_val: T73*
getopt_struct: 73%*

of file: 3%21, 22% 23, 24, 50, 64.
gf-id_byte: 15, 64, 68.
gf-prev_ptr: 46, 61, 69, 71.
GF_type: 3*

GFTYPE_HELP: 73¥

has_arg: T4F 75F 76F 7Tk 78*

hppp: 17, 61, 62.

it 3F

identification byte should be n: 64, 68.
image: 37F 43, 58.

image_array: 5¥ 6F 37F 38F 39F 40*
incr:  6F24, 43, 53, 58, 59, T1, T4¥75F 76F TT*
inf: 6%F



114 INDEX

inf_line_length: 5%

initialize:  3F 667

input_ln: 29%*

integer: 3% 4% 23, 24, 35, 41, 45% 46, 48F 49,
61, 62, 67, 73*

Japanese characters: 18.

k: 61.

Knuth, Donald Ervin: 1%

kpse_gf-format: 22%

kpse_init_prog: 3*

kpse_open_file: 22¥

kpse_set_program_name: 3*

l: 67.

last_text_char: 9% 12.

libc_free: 40%*

line_length: 4F 5F 6F 53.

long_options: T3F TAF 75X 76F 7TF 78*

m: 35, 61.

max_col: 4F5F 37F 38F 39F 407F 42.

mazx_cols: 4F 6F 38%F

maz_image: 5F 6¥

maz-int: 63.

maz_m: 15, 17, 38*

max-m_observed: 40F41, 42, 57, 71, 72.

maz_m_overall: 41, 61, 63, 72.

maz_m_stated: 38F41, 61, 71, 72.

max_n: 15, 17, 35, 38*

maz_n_observed: 40%41, 42, 69, 72.

maz_n_overall: 41, 61, 63, 72.

maz_n_stated: 38F41, 43, 59, 60, 61, 71, 72.

maz_row: 4F5F 38F 39F 40F 42.

maz_rows: 4F 6F 38*

maz_subcol: 39F 40F 42, 43, 58.

maz_subrow: 39% 42, 43, 58.

min_m: 15, 17, 35, 38%*

min_m_overall: 41, 61, 63, 72.

min_m_stated: 38F41, 43, 61, 71, 72.

min_n: 15, 17, 38*

min_n_overall: 41, 61, 63, 72.

min_n_stated: 38F41, 61, 71, 72.

missing locator...: 64.
my_name: 1F 3F 73*
n: 35.

n_options: T3¥

name: 73¥ T4F 75F 76F T7F 78*
negate: G6¥ 45%

new_row.0: 15, 16, 48F 51%*
new_row_-1: 15.

new_row_164: 15.

nl_error: 50, 53.

no_op: 15, 16, 18, 48% 52, 65, 70.
non-ASCII character...: 5H3.

GF type changes for C

not enough signature bytes...: 64.
o: 49, 67.

open_gf-file: 22% 68.

optind: 22F 73*

option_index: 73%

Options selected: 34F

ord: 10, 45%*

oriental characters: 18.

othercases: 2.

others: 2.

output: 3¥

p: 49, 61, 67.

paint:  56.

paint_switch: 14, 15, 35, 57, 58, 59, 60, 71.
paint_0: 15, 16, 48%*

paintl: 15, 16, 48% 51F 56.

paint2: 15.

paint3: 15.

parse_arguments: 3¥ 73¥*

piz_ratio: 61, 62, 65.

pizel: 35, 36, 37F 38%*

post: 13,15, 16, 17, 19, 48% 52, 61, 62, 69.
post_loc: 61, 62, 64.

post_post: 15, 16, 17, 19, 48F 52, 64.
postamble command within...: 52.
postamble pointer should be...: 64.
Postamble starts at byte n: 61.
pre: 13, 15, 16, 48F 52, 68.

preamble command within...: 52.
previous character...: 71, 72

§79

print: 3% 34% 43, 45% 50, 53, 55, 56, 57, 59, 60,

61, 65, 66% 68, 69, 71.

print_ln:  3*34%40%42, 43, 49, 61, 65, 6668, 71, 72.

print_nl: 3% 43, 50, 52, 53, 667 69.
print_scaled: 45F 55, 61, 65.
print_version_and_exit: T3%*
proofing: 18.

q: 49, 61, 67.

r. 67.

read: 24.

read_postamble: 61, 66¥*

real: 62.

round: 65.

s:  45%

scaled: 15, 17, 18.
setup_bound_var: 6%
setup_bound_var_end: 6%
setup_bound_var_end_end: 6¥
setup_bound_variable: 6*

should be postpost: 64.
show_label: 50.

show_mnemonic: 50, 52, 53, 55, 59, 60, 70.



§79 GF type changes for C

signature...should be...: 64. xxxl:
signed_quad: 24, 48% 61, 64, 65, T1. xxx8
sizteen_cases: 48% TXT4
sizty_four_cases: 48F 51°* Yyy:

skip0: 15, 16, 48% 51F

skipl: 15, 16, 48* 60.

skip2: 15.

skip8: 15.

start_op: 50, 56, 70.

stderr: T7F 73¥

stdout: 3¥

stremp:  73%*

string of negative length: 53.

sup: 6%

sup_line_length: 5%

system dependencies: 2, 7¥9¥19, 20, 24, 257F 28,
297F 36, 37F 38F 40%*

term_out: 28.

text_char: 9F 10.

text_file: 9¥

The character is too large...: 42
the file ended prematurely: 50.
The file had n characters...: 66¥

thirty_seven_cases: 48% 51°*

thirty_two_cases: 48%F

This pixel’s lower...: 43.

This pixel’s upper: 43.

total_chars: 46, 47, 66F 71.

true: 25F% 36, 49, 53.

u:  61.

uexit: T¥

undefined command: 51F

undefined_commands: 16, 48%*

unity: 45F 65.

update_terminal: 28.

usage: T73%F

usage_help: T3¥*

v:  61.

val:  TA* T5 T6* TT* T8*

version_string: 3¥

vppp: 17, 61, 62.

w: 61.

wants_mnemonics:
59, 60, 71, 76*

wants_pizels: 25% 34F% 57, 69, 71, T7*

25% 34% 50, 53, 55, 56, 57,

white: 15, 35, 36, 38%40%43, 57, 58, 60, 71.
write:  3¥
write_ln: 3% TF 73*

xcalloc_array: 38%*

zchr: 10, 11, 12, 45F% 53, 68.
zord: 10, 12.

zxxl: 15, 16, 48F% 51F 70.

15.
15.
15.
15, 16, 18, 48% 51%* 70.

INDEX

115



116 NAMES OF THE SECTIONS GF type changes for C

( Cases for commands no_op, pre, post, post_post, boc, and eoc 52) Used in section 51*.

(Clear the image 38*) Used in section 71.

( Compare the subarray boundaries with the observed boundaries 42) Used in section 40*.

( Constants in the outer block 5*) Used in section 3*.

(Define parse_arguments 73*) Used in section 3*.

(Define the option table 74*, 75%, 76*, 77*, 78*) Used in section 73*.

( Globals in the outer block 4*, 10, 21, 23, 25%, 35, 37*, 41, 46, 54, 62, 67)  Used in section 3*.

(Make sure that the end of the file is well-formed 64) Used in section 61.

(Paint pixels m — p through m — 1 in row n of the subarray 58) Used in section 57.

(Paint the next p pixels 57) Used in section 56.

(Pass a boc command 71) Used in section 69.

(Pass an eoc command 72) Used in section 69.

(Pass no_op, zzx and yyy commands 70) Used in section 69.

(Print all the selected options 34*) Used in section 22*.

(Print asterisk patterns for rows 0 to maz_subrow 43) Used in section 40*.

(Print the image 40*) Used in section 69.

(Process the character locations in the postamble 65) Used in section 61.

(Process the preamble 68) Used in section 66*.

(Set initial values 6*, 11, 12, 26*, 47, 63) Used in section 3*.

(Start translation of command o and goto the appropriate label to finish the job 51*) Used in section 50.

( Translate a sequence of paint commands, until reaching a non-paint 56) Used in section 51*.

(Translate a new_row command 59) Used in sections 51*, 51%, and 51*.

( Translate a skip command 60) Used in section 51*.

( Translate a yyy command 55) Used in sections 51* and 70.

( Translate all the characters 69) Used in section 66*.

(Translate an zzz command 53) Used in sections 51* and 70.

( Translate the next command in the GF file; goto 9999 if it was eoc; goto 9998 if premature termination is
needed 50> Used in section 49.

(Types in the outer block 8, 9%, 20,36) Used in section 3*.



	 Introduction
	 The character set
	 Generic font file format
	 Input from binary files
	 Optional modes of output
	 The image array
	 Translation to symbolic form
	 Reading the postamble
	 The main program
	 System-dependent changes
	 Index
	Names of the sections
	Cases for commands no_op, pre, post, post_post, boc, and eoc
	Clear the image
	Compare the subarray boundaries with the observed boundaries
	Constants in the outer block
	Define parse_arguments
	Define the option table
	Globals in the outer block
	Make sure that the end of the file is well-formed
	Paint pixels m-p through m-1 in row n of the subarray
	Paint the next p pixels
	Pass a boc command
	Pass an eoc command
	Pass no_op, xxx and yyy commands
	Print all the selected options
	Print asterisk patterns for rows 0 to max_subrow
	Print the image
	Process the character locations in the postamble
	Process the preamble
	Set initial values
	Start translation of command o and goto the appropriate label to finish the job
	Translate a sequence of paint commands, until reaching a non-paint
	Translate a new_row command
	Translate a skip command
	Translate a yyy command
	Translate all the characters
	Translate an xxx command
	Translate the next command in the GF file; goto 9999 if it was eoc; goto 9998 if premature termination is needed
	Types in the outer block


